Papers
Topics
Authors
Recent
2000 character limit reached

Improve Robustness of Reinforcement Learning against Observation Perturbations via $l_\infty$ Lipschitz Policy Networks

Published 14 Dec 2023 in cs.LG | (2312.08751v1)

Abstract: Deep Reinforcement Learning (DRL) has achieved remarkable advances in sequential decision tasks. However, recent works have revealed that DRL agents are susceptible to slight perturbations in observations. This vulnerability raises concerns regarding the effectiveness and robustness of deploying such agents in real-world applications. In this work, we propose a novel robust reinforcement learning method called SortRL, which improves the robustness of DRL policies against observation perturbations from the perspective of the network architecture. We employ a novel architecture for the policy network that incorporates global $l_\infty$ Lipschitz continuity and provide a convenient method to enhance policy robustness based on the output margin. Besides, a training framework is designed for SortRL, which solves given tasks while maintaining robustness against $l_\infty$ bounded perturbations on the observations. Several experiments are conducted to evaluate the effectiveness of our method, including classic control tasks and video games. The results demonstrate that SortRL achieves state-of-the-art robustness performance against different perturbation strength.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.