Papers
Topics
Authors
Recent
2000 character limit reached

Federated Learning for Wireless Applications: A Prototype

Published 14 Dec 2023 in cs.IT and math.IT | (2312.08577v1)

Abstract: Wireless embedded edge devices are ubiquitous in our daily lives, enabling them to gather immense data via onboard sensors and mobile applications. This offers an amazing opportunity to train ML models in the realm of wireless devices for decision-making. Training ML models in a wireless setting necessitates transmitting datasets collected at the edge to a cloud parameter server, which is infeasible due to bandwidth constraints, security, and privacy issues. To tackle these challenges, Federated Learning (FL) has emerged as a distributed optimization approach to the decentralization of the model training process. In this work, we present a novel prototype to examine FL's effectiveness over bandwidth-constrained wireless channels. Through a novel design consisting of Zigbee and NI USRP devices, we propose a configuration that allows clients to broadcast synergistically local ML model updates to a central server to obtain a generalized global model. We assess the efficacy of this prototype using metrics such as global model accuracy and time complexity under varying conditions of transmission power, data heterogeneity and local learning.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.