Papers
Topics
Authors
Recent
2000 character limit reached

On the spectrum of mesons in quenched $Sp(2N)$ gauge theories (2312.08465v3)

Published 13 Dec 2023 in hep-lat

Abstract: We report the findings of our extensive study of the spectra of flavoured mesons in lattice gauge theories with symplectic gauge group and fermion matter content treated in the quenched approximation. For the $Sp(4)$, $Sp(6)$, and $Sp(8)$ gauge groups, the (Dirac) fermions transform in either the fundamental, or the 2-index, antisymmetric or symmetric, representations. This study sets the stage for future precision calculations with dynamical fermions in the low mass region of lattice parameter space. Our results have potential phenomenological applications ranging from composite Higgs models, to top (partial) compositeness, to dark matter models with composite, strong-coupling dynamical origin. Having adopted the Wilson flow as a scale-setting procedure, we apply Wilson chiral perturbation theory to extract the continuum and massless limits for the observables of interest. The resulting measurements are used to perform a simplified extrapolation to the large-$N$ limit, hence drawing a preliminary connection with gauge theories with unitary groups. We conclude with a brief discussion of the Weinberg sum rules.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (115)
  1. D. B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136, 183 (1984).
  2. H. Georgi and D. B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145, 216 (1984).
  3. M. J. Dugan, H. Georgi, and D. B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254, 299 (1985).
  4. G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Vol. 913 (Springer, 2016) arXiv:1506.01961 [hep-ph] .
  5. O. Witzel, Review on Composite Higgs Models, PoS LATTICE2018, 006 (2019), arXiv:1901.08216 [hep-lat] .
  6. G. Cacciapaglia, C. Pica, and F. Sannino, Fundamental Composite Dynamics: A Review, Phys. Rept. 877, 1 (2020a), arXiv:2002.04914 [hep-ph] .
  7. G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03, 077, arXiv:1312.5330 [hep-ph] .
  8. G. Ferretti, Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC, JHEP 06, 107, arXiv:1604.06467 [hep-ph] .
  9. E. Katz, A. E. Nelson, and D. G. E. Walker, The Intermediate Higgs, JHEP 08, 074, arXiv:hep-ph/0504252 .
  10. P. Lodone, Vector-like quarks in a ‘composite’ Higgs model, JHEP 12, 029, arXiv:0806.1472 [hep-ph] .
  11. D. Marzocca, M. Serone, and J. Shu, General Composite Higgs Models, JHEP 08, 013, arXiv:1205.0770 [hep-ph] .
  12. J. Barnard, T. Gherghetta, and T. S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02, 002, arXiv:1311.6562 [hep-ph] .
  13. C. Grojean, O. Matsedonskyi, and G. Panico, Light top partners and precision physics, JHEP 10, 160, arXiv:1306.4655 [hep-ph] .
  14. G. Cacciapaglia and F. Sannino, Fundamental Composite (Goldstone) Higgs Dynamics, JHEP 04, 111, arXiv:1402.0233 [hep-ph] .
  15. G. Ferretti, UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group, JHEP 06, 142, arXiv:1404.7137 [hep-ph] .
  16. L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP 02, 094, arXiv:1506.00623 [hep-ph] .
  17. T. Ma and G. Cacciapaglia, Fundamental Composite 2HDM: SU(N) with 4 flavours, JHEP 03, 211, arXiv:1508.07014 [hep-ph] .
  18. J. Galloway, A. L. Kagan, and A. Martin, A UV complete partially composite-pNGB Higgs, Phys. Rev. D 95, 035038 (2017), arXiv:1609.05883 [hep-ph] .
  19. C. Csaki, T. Ma, and J. Shu, Maximally Symmetric Composite Higgs Models, Phys. Rev. Lett. 119, 131803 (2017), arXiv:1702.00405 [hep-ph] .
  20. M. Golterman and Y. Shamir, Effective potential in ultraviolet completions for composite Higgs models, Phys. Rev. D 97, 095005 (2018), arXiv:1707.06033 [hep-ph] .
  21. C. Csáki, T. Ma, and J. Shu, Trigonometric Parity for Composite Higgs Models, Phys. Rev. Lett. 121, 231801 (2018), arXiv:1709.08636 [hep-ph] .
  22. J. Serra and R. Torre, Neutral naturalness from the brother-Higgs model, Phys. Rev. D 97, 035017 (2018), arXiv:1709.05399 [hep-ph] .
  23. T. Alanne, D. Buarque Franzosi, and M. T. Frandsen, A partially composite Goldstone Higgs, Phys. Rev. D 96, 095012 (2017), arXiv:1709.10473 [hep-ph] .
  24. N. Bizot, G. Cacciapaglia, and T. Flacke, Common exotic decays of top partners, JHEP 06, 065, arXiv:1803.00021 [hep-ph] .
  25. C. Cai, G. Cacciapaglia, and H.-H. Zhang, Vacuum alignment in a composite 2HDM, JHEP 01, 130, arXiv:1805.07619 [hep-ph] .
  26. D. Buarque Franzosi, G. Cacciapaglia, and A. Deandrea, Sigma-assisted low scale composite Goldstone–Higgs, Eur. Phys. J. C 80, 28 (2020), arXiv:1809.09146 [hep-ph] .
  27. T. Appelquist, J. Ingoldby, and M. Piai, Nearly Conformal Composite Higgs Model, Phys. Rev. Lett. 126, 191804 (2021), arXiv:2012.09698 [hep-ph] .
  28. D. Buarque Franzosi and G. Ferretti, Anomalous dimensions of potential top-partners, SciPost Phys. 7, 027 (2019), arXiv:1905.08273 [hep-ph] .
  29. G. Cacciapaglia, S. Vatani, and C. Zhang, Composite Higgs Meets Planck Scale: Partial Compositeness from Partial Unification, Phys. Lett. B 815, 136177 (2021), arXiv:1911.05454 [hep-ph] .
  30. H. Cai and G. Cacciapaglia, Singlet dark matter in the SU(6)/SO(6) composite Higgs model, Phys. Rev. D 103, 055002 (2021), arXiv:2007.04338 [hep-ph] .
  31. A. Banerjee, D. B. Franzosi, and G. Ferretti, Modelling vector-like quarks in partial compositeness framework, JHEP 03, 200, arXiv:2202.00037 [hep-ph] .
  32. T. Appelquist, J. Ingoldby, and M. Piai, Composite two-Higgs doublet model from dilaton effective field theory, Nucl. Phys. B 983, 115930 (2022a), arXiv:2205.03320 [hep-ph] .
  33. R. Contino, Y. Nomura, and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671, 148 (2003), arXiv:hep-ph/0306259 .
  34. K. Agashe, R. Contino, and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719, 165 (2005), arXiv:hep-ph/0412089 .
  35. K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742, 59 (2006), arXiv:hep-ph/0510164 .
  36. R. Contino, L. Da Rold, and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75, 055014 (2007), arXiv:hep-ph/0612048 .
  37. A. Falkowski and M. Perez-Victoria, Electroweak Breaking on a Soft Wall, JHEP 12, 107, arXiv:0806.1737 [hep-ph] .
  38. R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small (2011) pp. 235–306, arXiv:1005.4269 [hep-ph] .
  39. F. Caracciolo, A. Parolini, and M. Serone, UV Completions of Composite Higgs Models with Partial Compositeness, JHEP 02, 066, arXiv:1211.7290 [hep-ph] .
  40. D. Elander and M. Piai, Towards top-down holographic composite Higgs: minimal coset from maximal supergravity, JHEP 03, 049, arXiv:2110.02945 [hep-th] .
  41. D. Elander, A. Fatemiabhari, and M. Piai, Towards composite Higgs: minimal coset from a regular bottom-up holographic model,   (2023), arXiv:2303.00541 [hep-th] .
  42. D. B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365, 259 (1991).
  43. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474, 361 (2000), arXiv:hep-ph/9912408 .
  44. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586, 141 (2000), arXiv:hep-ph/0003129 .
  45. Z. Chacko and R. K. Mishra, Effective Theory of a Light Dilaton, Phys. Rev. D 87, 115006 (2013), arXiv:1209.3022 [hep-ph] .
  46. Y. Hochberg, E. Kuflik, and H. Murayama, SIMP Spectroscopy, JHEP 05, 090, arXiv:1512.07917 [hep-ph] .
  47. M. Hansen, K. Langæble, and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92, 075036 (2015), arXiv:1507.01590 [hep-ph] .
  48. N. Bernal and X. Chu, ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT SIMP Dark Matter, JCAP 01, 006, arXiv:1510.08527 [hep-ph] .
  49. N. Bernal, X. Chu, and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev. D 95, 115023 (2017), arXiv:1702.04906 [hep-ph] .
  50. Y.-D. Tsai, R. McGehee, and H. Murayama, Resonant Self-Interacting Dark Matter from Dark QCD, Phys. Rev. Lett. 128, 172001 (2022), arXiv:2008.08608 [hep-ph] .
  51. E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30, 272 (1984).
  52. M. Kamionkowski, A. Kosowsky, and M. S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49, 2837 (1994), arXiv:astro-ph/9310044 .
  53. B. Allen, The Stochastic gravity wave background: Sources and detection, in Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation (1996) pp. 373–417, arXiv:gr-qc/9604033 .
  54. P. Schwaller, Gravitational Waves from a Dark Phase Transition, Phys. Rev. Lett. 115, 181101 (2015), arXiv:1504.07263 [hep-ph] .
  55. D. Croon, V. Sanz, and G. White, Model Discrimination in Gravitational Wave spectra from Dark Phase Transitions, JHEP 08, 203, arXiv:1806.02332 [hep-ph] .
  56. N. Christensen, Stochastic Gravitational Wave Backgrounds, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .
  57. Z. Kang, J. Zhu, and S. Matsuzaki, Dark confinement-deconfinement phase transition: a roadmap from Polyakov loop models to gravitational waves, JHEP 09, 060, arXiv:2101.03795 [hep-ph] .
  58. M. Reichert and Z.-W. Wang, Gravitational Waves from dark composite dynamics, in 15th Conference on Quark Confinement and the Hadron Spectrum (2022) arXiv:2211.08877 [hep-ph] .
  59. N. Seto, S. Kawamura, and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87, 221103 (2001), arXiv:astro-ph/0108011 .
  60. S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23, S125 (2006).
  61. J. Crowder and N. J. Cornish, Beyond LISA: Exploring future gravitational wave missions, Phys. Rev. D 72, 083005 (2005), arXiv:gr-qc/0506015 .
  62. V. Corbin and N. J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23, 2435 (2006), arXiv:gr-qc/0512039 .
  63. S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
  64. K. Yagi and N. Seto, Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries, Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
  65. B. Sathyaprakash et al., Scientific Objectives of Einstein Telescope, Class. Quant. Grav. 29, 124013 (2012), [Erratum: Class.Quant.Grav. 30, 079501 (2013)], arXiv:1206.0331 [gr-qc] .
  66. E. Thrane and J. D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
  67. C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04, 001, arXiv:1512.06239 [astro-ph.CO] .
  68. P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna,   (2017), arXiv:1702.00786 [astro-ph.IM] .
  69. B. P. Abbott et al. (LIGO Scientific), Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, Class. Quant. Grav. 34, 044001 (2017), arXiv:1607.08697 [astro-ph.IM] .
  70. J. Baker et al., The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky,   (2019), arXiv:1907.06482 [astro-ph.IM] .
  71. V. Brdar, A. J. Helmboldt, and J. Kubo, Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales, JCAP 02, 021, arXiv:1810.12306 [hep-ph] .
  72. D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  73. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03, 024, arXiv:1910.13125 [astro-ph.CO] .
  74. M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO] .
  75. K. Holland, M. Pepe, and U. J. Wiese, The Deconfinement phase transition of Sp(2) and Sp(3) Yang-Mills theories in (2+1)-dimensions and (3+1)-dimensions, Nucl. Phys. B 694, 35 (2004), arXiv:hep-lat/0312022 .
  76. G. Aad et al. (ATLAS), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv:1207.7214 [hep-ex] .
  77. S. Chatrchyan et al. (CMS), Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv:1207.7235 [hep-ex] .
  78. A. Maas and F. Zierler, Strong isospin breaking in 𝑺𝑺\boldsymbol{\mathit{S}}bold_italic_S𝒑𝒑\boldsymbol{\mathit{p}}bold_italic_p(4) gauge theory, PoS LATTICE2021, 130 (2022), arXiv:2109.14377 [hep-lat] .
  79. F. Zierler and A. Maas, S⁢p⁢(4)𝑆𝑝4Sp(4)italic_S italic_p ( 4 ) SIMP Dark Matter on the Lattice, PoS LHCP2021, 162 (2021).
  80. E. Bennett et al., Symplectic lattice gauge theories on Grid: approaching the conformal window,   (2023c), arXiv:2306.11649 [hep-lat] .
  81. N. Forzano et al., Lattice studies of Sp(2N) gauge theories using GRID, in 40th International Symposium on Lattice Field Theory (2023) arXiv:2310.02111 [hep-lat] .
  82. W. Detmold, M. McCullough, and A. Pochinsky, Dark nuclei. II. Nuclear spectroscopy in two-color QCD, Phys. Rev. D 90, 114506 (2014), arXiv:1406.4116 [hep-lat] .
  83. J.-W. Lee, B. Lucini, and M. Piai, Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories, JHEP 04, 036, arXiv:1701.03228 [hep-lat] .
  84. V. Drach, T. Janowski, and C. Pica, Update on SU(2) gauge theory with NF = 2 fundamental flavours, EPJ Web Conf. 175, 08020 (2018), arXiv:1710.07218 [hep-lat] .
  85. Y. Aoki et al. (LatKMI), Light composite scalar in eight-flavor QCD on the lattice, Phys. Rev. D 89, 111502 (2014), arXiv:1403.5000 [hep-lat] .
  86. T. Appelquist et al., Strongly interacting dynamics and the search for new physics at the LHC, Phys. Rev. D 93, 114514 (2016), arXiv:1601.04027 [hep-lat] .
  87. Y. Aoki et al. (LatKMI), Light flavor-singlet scalars and walking signals in Nf=8subscript𝑁𝑓8N_{f}=8italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 8 QCD on the lattice, Phys. Rev. D 96, 014508 (2017), arXiv:1610.07011 [hep-lat] .
  88. A. D. Gasbarro and G. T. Fleming, Examining the Low Energy Dynamics of Walking Gauge Theory, PoS LATTICE2016, 242 (2017), arXiv:1702.00480 [hep-lat] .
  89. T. Appelquist et al. (Lattice Strong Dynamics), Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors, Phys. Rev. D 99, 014509 (2019), arXiv:1807.08411 [hep-lat] .
  90. T. Appelquist et al. (Lattice Strong Dynamics (LSD)), Goldstone boson scattering with a light composite scalar, Phys. Rev. D 105, 034505 (2022b), arXiv:2106.13534 [hep-ph] .
  91. A. Hasenfratz, Emergent strongly coupled ultraviolet fixed point in four dimensions with eight Kähler-Dirac fermions, Phys. Rev. D 106, 014513 (2022), arXiv:2204.04801 [hep-lat] .
  92. T. Appelquist et al. (LSD), Hidden Conformal Symmetry from the Lattice,   (2023), arXiv:2305.03665 [hep-lat] .
  93. R. C. Brower et al. (Lattice Strong Dynamics), Light Scalar Meson and Decay Constant in SU(3) Gauge Theory with Eight Dynamical Flavors,   (2023), arXiv:2306.06095 [hep-lat] .
  94. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
  95. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109 .
  96. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 .
  97. B. Lucini and M. Panero, SU(N) gauge theories at large N, Phys. Rept. 526, 93 (2013), arXiv:1210.4997 [hep-th] .
  98. M. Garcίa Pérez, Prospects for large N gauge theories on the lattice, PoS LATTICE2019, 276 (2020), arXiv:2001.10859 [hep-lat] .
  99. P. Hernández and F. Romero-López, The large Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT limit of QCD on the lattice, Eur. Phys. J. A 57, 52 (2021), arXiv:2012.03331 [hep-lat] .
  100. T. A. DeGrand and E. Wickenden, Lattice study of the chiral properties of large Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT QCD,   (2023), arXiv:2309.12270 [hep-lat] .
  101. B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259, 572 (1985).
  102. G. Rupak and N. Shoresh, Chiral perturbation theory for the Wilson lattice action, Phys. Rev. D 66, 054503 (2002), arXiv:hep-lat/0201019 .
  103. S. R. Sharpe and R. L. Singleton, Jr, Spontaneous flavor and parity breaking with Wilson fermions, Phys. Rev. D 58, 074501 (1998), arXiv:hep-lat/9804028 .
  104. K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 1. Principles and φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT Theory, Nucl. Phys. B 226, 187 (1983).
  105. A. Kennedy and B. Pendleton, Improved heatbath method for monte carlo calculations in lattice gauge theories, Physics Letters B 156, 393 (1985).
  106. C. Whitmer, Over-relaxation methods for monte carlo simulations of quadratic and multiquadratic actions, Phys. Rev. D 29, 306 (1984).
  107. S. L. Adler, Over-relaxation method for the monte carlo evaluation of the partition function for multiquadratic actions, Phys. Rev. D 23, 2901 (1981).
  108. M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08, 071, [Erratum: JHEP 03, 092 (2014)], arXiv:1006.4518 [hep-lat] .
  109. M. Lüscher, Future applications of the Yang-Mills gradient flow in lattice QCD, PoS LATTICE2013, 016 (2014), arXiv:1308.5598 [hep-lat] .
  110. M. Luscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories, JHEP 02, 051, arXiv:1101.0963 [hep-th] .
  111. C. W. Bernard and M. F. L. Golterman, Finite volume two pion energies and scattering in the quenched approximation, Phys. Rev. D 53, 476 (1996), arXiv:hep-lat/9507004 .
  112. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18, 507 (1967).
  113. M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46, 381 (1992).
  114. S. Eidelman et al. (Particle Data Group), Review of particle physics. Particle Data Group, Phys. Lett. B 592, 1 (2004).
  115. M. Luscher, K. Symanzik, and P. Weisz, Anomalies of the Free Loop Wave Equation in the WKB Approximation, Nucl. Phys. B 173, 365 (1980).
Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.