Extreme mass-ratio inspirals in ultra-light dark matter (2312.06767v2)
Abstract: Previous works have argued that future gravitational-wave detectors will be able to probe the properties of astrophysical environments where binary coalesce, including accretion disks, but also dark matter structures. Most analyses have resorted to a Newtonian modelling of the environmental effects, which are not suited to study extreme-mass-ratio inspirals immersed in structures of ultra-light bosons. In this letter, we use relativistic perturbation theory to consistently study these systems in spherical symmetry. We compute the flux of scalar particles and the rate at which orbital energy (and angular momentum) is dissipated via gravitational radiation and depletion of scalars, i.e. dynamical friction. Our results suggest that the Laser Inteferometer Space Antenna will be able to probe ultra-light dark matter structures in the Galaxy by tracking the phase of extreme-mass-ratio inspirals.
- T. Hinderer and E. E. Flanagan, Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion, Phys. Rev. D 78, 064028 (2008), arXiv:0805.3337 [gr-qc] .
- L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
- P. Amaro-Seoane et al. (LISA), Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Rel. 26, 2 (2023), arXiv:2203.06016 [gr-qc] .
- P. Auclair et al. (LISA Cosmology Working Group), Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26, 5 (2023), arXiv:2204.05434 [astro-ph.CO] .
- K. G. Arun et al. (LISA), New horizons for fundamental physics with LISA, Living Rev. Rel. 25, 4 (2022), arXiv:2205.01597 [gr-qc] .
- Z. Pan and H. Yang, Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei, Phys. Rev. D 103, 103018 (2021), arXiv:2101.09146 [astro-ph.HE] .
- Z. Pan, Z. Lyu, and H. Yang, Wet extreme mass ratio inspirals may be more common for spaceborne gravitational wave detection, Phys. Rev. D 104, 063007 (2021), arXiv:2104.01208 [astro-ph.HE] .
- A. Derdzinski and L. Mayer, In-situ extreme mass ratio inspirals via sub-parsec formation and migration of stars in thin, gravitationally unstable AGN discs 10.1093/mnras/stad749 (2022), arXiv:2205.10382 [astro-ph.GA] .
- R. Abbott et al. (LIGO Scientific, Virgo), GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020a), arXiv:2004.08342 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, Astrophys. J. Lett. 896, L44 (2020b), arXiv:2006.12611 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), GW190521: A Binary Black Hole Merger with a Total Mass of 150M⊙150subscript𝑀direct-product150~{}M_{\odot}150 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, Phys. Rev. Lett. 125, 101102 (2020c), arXiv:2009.01075 [gr-qc] .
- B. Abbott et al. (LIGO Scientific, Virgo), GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙similar-toabsent3.4subscript𝑀direct-product\sim 3.4M_{\odot}∼ 3.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, Astrophys. J. Lett. 892, L3 (2020d), arXiv:2001.01761 [astro-ph.HE] .
- H. Tagawa, Z. Haiman, and B. Kocsis, Formation and Evolution of Compact Object Binaries in AGN Disks, Astrophys. J. 898, 25 (2020), arXiv:1912.08218 [astro-ph.GA] .
- S. Chandrasekhar, Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction., Astrophysics Journal 97, 255 (1943).
- E. C. Ostriker, Dynamical friction in a gaseous medium, Astrophys. J. 513, 252 (1999), arXiv:astro-ph/9810324 .
- N. I. Shakura and R. A. Sunyaev, Black holes in binary systems. Observational appearance, Astron. Astrophys. 24, 337 (1973).
- M. A. Abramowicz and P. C. Fragile, Foundations of Black Hole Accretion Disk Theory, Living Rev. Rel. 16, 1 (2013), arXiv:1104.5499 [astro-ph.HE] .
- J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of cold dark matter halos, Astrophys. J. 462, 563 (1996), arXiv:astro-ph/9508025 .
- L. Hernquist, An Analytical Model for Spherical Galaxies and Bulges, The Astrophysical Journal 356, 359 (1990).
- E. Barausse, V. Cardoso, and P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev. D 89, 104059 (2014).
- V. Cardoso and A. Maselli, Constraints on the astrophysical environment of binaries with gravitational-wave observations, Astron. Astrophys. 644, A147 (2020), arXiv:1909.05870 [astro-ph.HE] .
- L. Zwick, P. R. Capelo, and L. Mayer, Priorities in gravitational waveforms for future space-borne detectors: vacuum accuracy or environment?, Mon. Not. Roy. Astron. Soc. 521, 4645 (2023), arXiv:2209.04060 [gr-qc] .
- B. Kocsis, N. Yunes, and A. Loeb, Observable Signatures of EMRI Black Hole Binaries Embedded in Thin Accretion Disks, Phys. Rev. D 84, 024032 (2011), arXiv:1104.2322 [astro-ph.GA] .
- G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Dynamical Friction in Gravitational Atoms, (2023), arXiv:2305.15460 [gr-qc] .
- R. Vicente and V. Cardoso, Dynamical friction of black holes in ultralight dark matter, Phys. Rev. D 105, 083008 (2022), arXiv:2201.08854 [gr-qc] .
- H. Tanaka, T. Takeuchi, and W. R. Ward, Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration, Astrophys. J. 565, 1257 (2002).
- S. Detweiler and L. Lindblom, On the nonradial pulsations of general relativistic stellar models, Astrophys. J. 292, 12 (1985).
- Y. Kojima, Equations governing the nonradial oscillations of a slowly rotating relativistic star, Phys. Rev. D 46, 4289 (1992).
- O. Sarbach and M. Tiglio, Gauge invariant perturbations of Schwarzschild black holes in horizon penetrating coordinates, Phys. Rev. D 64, 084016 (2001), arXiv:gr-qc/0104061 .
- K. Martel and E. Poisson, Gravitational perturbations of the schwarzschild spacetime: A practical covariant and gauge-invariant formalism, Phys. Rev. D 71, 104003 (2005a).
- K. Martel, Gravitational waveforms from a point particle orbiting a schwarzschild black hole, Phys. Rev. D 69, 044025 (2004).
- K. Clough, P. G. Ferreira, and M. Lagos, Growth of massive scalar hair around a Schwarzschild black hole, Phys. Rev. D100, 063014 (2019), arXiv:1904.12783 [gr-qc] .
- R. D. Peccei and H. R. Quinn, CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977).
- S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
- L. Hui, Wave Dark Matter, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
- D. J. Kaup, Klein-gordon geon, Phys. Rev. 172, 1331 (1968).
- E. Seidel and W.-M. Suen, Formation of solitonic stars through gravitational cooling, Phys. Rev. Lett. 72, 2516 (1994), arXiv:gr-qc/9309015 .
- J.-w. Lee and I.-g. Koh, Galactic halos as boson stars, Phys. Rev. D 53, 2236 (1996), arXiv:hep-ph/9507385 .
- S. L. Liebling and C. Palenzuela, Dynamical Boson Stars, Living Rev. Rel. 15, 6 (2012), arXiv:1202.5809 [gr-qc] .
- D. F. Torres, S. Capozziello, and G. Lambiase, A Supermassive scalar star at the galactic center?, Phys. Rev. D 62, 104012 (2000), arXiv:astro-ph/0004064 .
- H.-Y. Schive, T. Chiueh, and T. Broadhurst, Cosmic Structure as the Quantum Interference of a Coherent Dark Wave, Nature Phys. 10, 496 (2014a), arXiv:1406.6586 [astro-ph.GA] .
- J. Veltmaat, J. C. Niemeyer, and B. Schwabe, Formation and structure of ultralight bosonic dark matter halos, Phys. Rev. D 98, 043509 (2018), arXiv:1804.09647 [astro-ph.CO] .
- B. Moore, Evidence against dissipation-less dark matter from observations of galaxy haloes, Nature (London) 370, 629 (1994).
- J. F. Navarro, C. S. Frenk, and S. D. M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490, 493 (1997), arXiv:astro-ph/9611107 .
- R. Brito, V. Cardoso, and P. Pani, Superradiance, Lect. Notes Phys. 906, pp.1 (2015a), arXiv:1501.06570 [gr-qc] .
- W. H. Press and S. A. Teukolsky, Floating Orbits, Superradiant Scattering and the Black-hole Bomb, Nature (London) 238, 211 (1972).
- S. R. Dolan, Instability of the massive Klein-Gordon field on the Kerr spacetime, Phys. Rev. D 76, 084001 (2007), arXiv:0705.2880 [gr-qc] .
- W. E. East and F. Pretorius, Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes, Phys. Rev. Lett. 119, 041101 (2017), arXiv:1704.04791 [gr-qc] .
- S. L. Detweiler, KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES, Phys. Rev. D 22, 2323 (1980).
- V. Cardoso and S. Yoshida, Superradiant instabilities of rotating black branes and strings, JHEP 07, 009, arXiv:hep-th/0502206 .
- A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
- R. Ruffini and J. A. Wheeler, Introducing the black hole, Phys. Today 24, 30 (1971).
- J. D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett. 28, 452 (1972).
- T. Regge and J. A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108, 1063 (1957).
- F. J. Zerilli, Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics, Phys. Rev. D 2, 2141 (1970).
- N. Sago, H. Nakano, and M. Sasaki, Gauge problem in the gravitational selfforce. 1. Harmonic gauge approach in the Schwarzschild background, Phys. Rev. D 67, 104017 (2003), arXiv:gr-qc/0208060 .
- S. L. Detweiler and E. Poisson, Low multipole contributions to the gravitational selfforce, Phys. Rev. D 69, 084019 (2004), arXiv:gr-qc/0312010 .
- K. Martel and E. Poisson, Gravitational perturbations of the Schwarzschild spacetime: A Practical covariant and gauge-invariant formalism, Phys. Rev. D 71, 104003 (2005b), arXiv:gr-qc/0502028 .
- R. A. Isaacson, Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Ef fective Stress Tensor, Phys. Rev. 166, 1272 (1968).
- L. Annulli, V. Cardoso, and R. Vicente, Response of ultralight dark matter to supermassive black holes and binaries, Phys. Rev. D 102, 063022 (2020), arXiv:2009.00012 [gr-qc] .
- P.-H. Chavanis, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results, Phys. Rev. D 84, 043531 (2011), arXiv:1103.2050 [astro-ph.CO] .
- F. Kling and A. Rajaraman, Towards an Analytic Construction of the Wavefunction of Boson Stars, Phys. Rev. D 96, 044039 (2017), arXiv:1706.04272 [hep-th] .
- J. H.-H. Chan, S. Sibiryakov, and W. Xue, Boson star normal modes, JHEP 08, 045, arXiv:2304.13054 [astro-ph.CO] .
- F. S. Guzman and L. A. Urena-Lopez, Evolution of the Schrodinger-Newton system for a selfgravitating scalar field, Phys. Rev. D 69, 124033 (2004), arXiv:gr-qc/0404014 .
- J. Kormendy and D. Richstone, Inward bound: The Search for supermassive black holes in galactic nuclei, Ann. Rev. Astron. Astrophys. 33, 581 (1995).
- J. Kormendy and L. C. Ho, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, Ann. Rev. Astron. Astrophys. 51, 511 (2013), arXiv:1304.7762 [astro-ph.CO] .
- E. Figueiredo, A. Maselli, and V. Cardoso, Black holes surrounded by generic dark matter profiles: Appearance and gravitational-wave emission, Phys. Rev. D 107, 104033 (2023), arXiv:2303.08183 [gr-qc] .
- R. Brito and S. Shah, Extreme mass-ratio inspirals into black holes surrounded by scalar clouds, Phys. Rev. D 108, 084019 (2023), arXiv:2307.16093 [gr-qc] .
- R. Brito, V. Cardoso, and P. Pani, Black holes as particle detectors: evolution of superradiant instabilities, Class. Quant. Grav. 32, 134001 (2015b), arXiv:1411.0686 [gr-qc] .
- G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background, Astrophys. J. Lett. 952, L37 (2023a), arXiv:2306.16220 [astro-ph.HE] .
- A. Afzal et al. (NANOGrav), The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
- G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023b), arXiv:2306.16213 [astro-ph.HE] .
- J. Antoniadis et al. (EPTA, InPTA:), The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678, A50 (2023a), arXiv:2306.16214 [astro-ph.HE] .
- C. Smarra et al. (European Pulsar Timing Array), The second data release from the European Pulsar Timing Array: VI. Challenging the ultralight dark matter paradigm, (2023), arXiv:2306.16228 [astro-ph.HE] .
- J. Antoniadis et al., The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, (2023b), arXiv:2306.16227 [astro-ph.CO] .
- A. Ghoshal and A. Strumia, Probing the Dark Matter density with gravitational waves from super-massive binary black holes, (2023), arXiv:2306.17158 [astro-ph.CO] .
- R. P. Nelson, On the orbital evolution of low mass protoplanets in turbulent, magnetised disks, Astron. Astrophys. 443, 1067 (2005), arXiv:astro-ph/0508486 .
- V. Cardoso, C. F. B. Macedo, and R. Vicente, Eccentricity evolution of compact binaries and applications to gravitational-wave physics, Phys. Rev. D 103, 023015 (2021), arXiv:2010.15151 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.