Understanding Physical Dynamics with Counterfactual World Modeling (2312.06721v3)
Abstract: The ability to understand physical dynamics is critical for agents to act in the world. Here, we use Counterfactual World Modeling (CWM) to extract vision structures for dynamics understanding. CWM uses a temporally-factored masking policy for masked prediction of video data without annotations. This policy enables highly effective "counterfactual prompting" of the predictor, allowing a spectrum of visual structures to be extracted from a single pre-trained predictor without finetuning on annotated datasets. We demonstrate that these structures are useful for physical dynamics understanding, allowing CWM to achieve the state-of-the-art performance on the Physion benchmark.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.