The parastatistics of braided Majorana fermions
Abstract: This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a $t$-dependent $4\times 4$ braiding matrix $B_t$ related to the Alexander-Conway polynomial. The nonvanishing complex parameter t defines the braided parastatistics. At $t = 1$ ordinary fermions are recovered. The values of $t$ at roots of unity are organized into levels which specify the maximal number of braided Majorana fermions in a multiparticle sector. Generic values of $t$ and the $t =-1$ root of unity mimick the behaviour of ordinary bosons.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.