Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multifractal nonlinearity as a robust estimator of multiplicative cascade dynamics (2312.05653v1)

Published 9 Dec 2023 in nlin.AO

Abstract: Multifractal formalisms provide an apt framework to study random cascades in which multifractal spectrum width $\Delta\alpha$ fluctuates depending on the number of estimable power-law relationships. Then again, multifractality without surrogate comparison can be ambiguous: the original measurement series' multifractal spectrum width $\Delta\alpha_\mathrm{Orig}$ can be sensitive to the series length, ergodicity-breaking linear temporal correlations (e.g., fractional Gaussian noise, $fGn$), or additive cascade dynamics. To test these threats, we built a suite of random cascades that differ by the length, type of noise (i.e., additive white Gaussian noise, $awGn$, or $fGn$), and mixtures of $awGn$ or $fGn$ across generations (progressively more $awGn$, progressively more $fGn$, and a random sampling by generation), and operations applying noise (i.e., addition vs. multiplication). The so-called ``multifractal nonlinearity'' $t_\mathrm{MF}$ (i.e., a $t$-statistic comparing $\Delta\alpha_\mathrm{Orig}$ and multifractal spectra width for phase-randomized linear surrogates $\Delta\alpha_\mathrm{Surr}$) is a robust indicator of random multiplicative rather than random additive cascade processes irrespective of the series length or type of noise. $t_\mathrm{MF}$ is more sensitive to the number of generations than the series length. Furthermore, the random additive cascades exhibited much stronger ergodicity breaking than all multiplicative analogs. Instead, ergodicity breaking in random multiplicative cascades more closely followed the ergodicity-breaking of the constituent noise types -- breaking ergodicity much less when arising from ergodic $awGn$ and more so for noise incorporating relatively more correlated $fGn$. Hence, $t_\mathrm{MF}$ is a robust multifractal indicator of multiplicative cascade processes and not spuriously sensitive to ergodicity breaking.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. J. S. Kelso, Dynamic Patterns: The Self-organization of Brain and Behavior (MIT Press, Cambridge, MA, 1995).
  2. F. P. De Lange, M. Heilbron, and P. Kok, How do expectations shape perception?, Trends in Cognitive Sciences 22, 764 (2018).
  3. H. A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1970).
  4. W. James, The Stream of Thought (Henry Holt and Co, New York, NY, 1890).
  5. L. F. Richardson, The analogy between mental images and sparks, Psychological Review 37, 214 (1930).
  6. A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237, 37 (1952).
  7. A. M. Turing, The chemical basis of morphogenesis, Bulletin of mathematical biology 52, 153 (1990).
  8. D. G. Kelty-Stephen and D. Mirman, Gaze fluctuations are not additively decomposable: Reply to Bogartz and Staub, Cognition 126, 128 (2013).
  9. V. Rezania, F. C. Sudirga, and J. A. Tuszynski, Multifractality nature of microtubule dynamic instability process, Physica A: Statistical Mechanics and its Applications 573, 125929 (2021).
  10. T. C. Roeske, D. Kelty-Stephen, and S. Wallot, Multifractal analysis reveals music-like dynamic structure in songbird rhythms, Scientific Reports 8, 4570 (2018).
  11. F. G. Schmitt and L. Seuront, Multifractal random walk in copepod behavior, Physica A: Statistical Mechanics and its Applications 301, 375 (2001).
  12. L. Seuront and H. E. Stanley, Anomalous diffusion and multifractality enhance mating encounters in the ocean, Proceedings of the National Academy of Sciences 111, 2206 (2014).
  13. D. G. Stephen and J. A. Dixon, Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors, Chaos, Solitons & Fractals 44, 160 (2011).
  14. E. A. Ihlen and B. Vereijken, Multifractal formalisms of human behavior, Human Movement Science 32, 633 (2013).
  15. E. A. Ihlen and B. Vereijken, Interaction-dominant dynamics in human cognition: Beyond 1/fα1superscript𝑓𝛼1/f^{\alpha}1 / italic_f start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT fluctuation, Journal of Experimental Psychology: General 139, 436 (2010).
  16. B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics 62, 331 (1974).
  17. P. C. Molenaar, On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on intra-individual variation, Developmental Psychobiology 50, 60 (2008).
  18. P. C. Molenaar and C. G. Campbell, The new person-specific paradigm in psychology, Current Directions in Psychological Science 18, 112 (2009).
  19. T. C. McLeish, Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence, Interface Focus 5, 20150041 (2015).
  20. M. Colombo and P. Palacios, Non-equilibrium thermodynamics and the free energy principle in biology, Biology & Philosophy 36, 41 (2021).
  21. D. G. Kelty-Stephen and M. Mangalam, Fractal and multifractal descriptors restore ergodicity broken by non-Gaussianity in time series, Chaos, Solitons & Fractals 163, 112568 (2022b).
  22. D. G. Kelty-Stephen and M. Mangalam, Multifractal descriptors ergodically characterize non-ergodic multiplicative cascade processes, Physica A: Statistical Mechanics and its Applications 617, 128651 (2023).
  23. M. Mangalam and D. G. Kelty-Stephen, Ergodic descriptors of non-ergodic stochastic processes, Journal of the Royal Society Interface 19, 20220095 (2022).
  24. M. Mangalam, R. Metzler, and D. G. Kelty-Stephen, Ergodic characterization of nonergodic anomalous diffusion processes, Physical Review Research 5, 023144 (2023).
  25. G. De Tomasi and I. M. Khaymovich, Multifractality meets entanglement: Relation for nonergodic extended states, Physical Review Letters 124, 200602 (2020).
  26. N. Macé, F. Alet, and N. Laflorencie, Multifractal scalings across the many-body localization transition, Physical Review Letters 123, 180601 (2019).
  27. K. Mahmoodi, B. J. West, and P. Grigolini, On the dynamical foundation of multifractality, Physica A: Statistical Mechanics and its Applications 551, 124038 (2020).
  28. E. A. F. E. Ihlen, Introduction to multifractal detrended fluctuation analysis in Matlab, Frontiers in Physiology 3, 141 (2012).
  29. T. Schreiber and A. Schmitz, Discrimination power of measures for nonlinearity in a time series, Physical Review E 55, 5443 (1997).
  30. T. Schreiber and A. Schmitz, Surrogate time series, Physica D: Nonlinear Phenomena 142, 346 (2000).
  31. W.-X. Zhou, Finite-size effect and the components of multifractality in financial volatility, Chaos, Solitons & Fractals 45, 147 (2012).
  32. T. Schreiber and A. Schmitz, Improved surrogate data for nonlinearity tests, Physical Review Letters 77, 635 (1996).
  33. D. A. Wooff and A. Jamalzadeh, Robust and scale-free effect sizes for non-Normal two-sample comparisons, with applications in e-commerce, Journal of Applied Statistics 40, 2495 (2013).
  34. R. Yeung and P. Nguyen-Hoang, Endogenous peer effects: Fact or fiction?, Journal of Educational Research 109, 37 (2016).
  35. H. Fan, S. He, and Y. K. Kwan, FDI backward spillovers in china: What a meta-analysis tells us?, Emerging Markets Finance and Trade 56, 86 (2020).
  36. D. G. Kelty-Stephen, E. Lane, and M. Mangalam, Multifractal test for nonlinear changes in time series, Behavior Research Methods 55, 2249 (2023a).
  37. N. S. Carver, D. Bojovic, and D. G. Kelty-Stephen, Multifractal foundations of visually-guided aiming and adaptation to prismatic perturbation, Human Movement Science 55, 61 (2017).
  38. D. G. Kelty-Stephen, Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data, PloS One 13, e0202367 (2018).
  39. M. Mangalam, N. S. Carver, and D. G. Kelty-Stephen, Multifractal signatures of perceptual processing on anatomical sleeves of the human body, Journal of The Royal Society Interface 17, 20200328 (2020).
  40. M. Mangalam and D. G. Kelty-Stephen, Multiplicative-cascade dynamics supports whole-body coordination for perception via effortful touch, Human Movement Science 70, 102595 (2020).
  41. R. M. Ward and D. G. Kelty-Stephen, Bringing the nonlinearity of the movement system to gestural theories of language use: Multifractal structure of spoken english supports the compensation for coarticulation in human speech perception, Frontiers in Physiology 9, 1152 (2018).
  42. D. Veneziano, G. E. Moglen, and R. L. Bras, Multifractal analysis: Pitfalls of standard procedures and alternatives, Physical Review E 52, 1387 (1995).
  43. M. F. Shlesinger, B. West, and J. Klafter, Lévy dynamics of enhanced diffusion: Application to turbulence, Physical Review Letters 58, 1100 (1987).
  44. E.-J. Wagenmakers, S. Farrell, and R. Ratcliff, Estimation and interpretation of 1/fα1superscript𝑓𝛼1/f^{\alpha}1 / italic_f start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT noise in human cognition, Psychonomic Bulletin & Review 11, 579 (2004).
  45. W. Deng and E. Barkai, Ergodic properties of fractional Brownian-Langevin motion, Physical Review E 79, 011112 (2009).
  46. S. Taylor, O. Sharpe, and J. Peethambaran, Prime gradient noise, Computational Visual Media 7, 349 (2021).
  47. J. T. Lee and D. G. Kelty-Stephen, Cascade-driven series with narrower multifractal spectra than their surrogates: Standard deviation of multipliers changes interactions across scales, Complexity 2017 (2017).
  48. A. Chhabra and R. V. Jensen, Direct determination of the f (α𝛼\alphaitalic_α) singularity spectrum, Physical Review Letters 62, 1327 (1989).
  49. M. Zamir, Critique of the test of multifractality as applied to biological data, Journal of Theoretical Biology 225, 407 (2003).
  50. D. Thirumalai, R. D. Mountain, and T. Kirkpatrick, Ergodic behavior in supercooled liquids and in glasses, Physical Review A 39, 3563 (1989).
  51. A. G. Cherstvy, A. V. Chechkin, and R. Metzler, Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes, New Journal of Physics 15, 083039 (2013).
  52. R Core Team, R: A language and environment for statistical computing, R Version 4.3.0  (2013).
  53. C. J. Morales and E. D. Kolaczyk, Wavelet-based multifractal analysis of human balance, Annals of Biomedical Engineering 30, 588 (2002).
  54. N. S. Carver and D. G. Kelty-Stephen, Multifractality in individual honeybee behavior hints at colony-specific social cascades: Reanalysis of radio-frequency identification data from five different colonies, Physical Review E 95, 022402 (2017).
  55. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f1𝑓1/f1 / italic_f noise, Physical Review Letters 59, 381 (1987).
  56. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Physical Review A 38, 364 (1988).
  57. B. Castaing, Y. Gagne, and E. Hopfinger, Velocity probability density functions of high reynolds number turbulence, Physica D: Nonlinear Phenomena 46, 177 (1990).
  58. K. Kiyono, Z. R. Struzik, and Y. Yamamoto, Estimator of a non-Gaussian parameter in multiplicative log-normal models, Physical Review E 76, 041113 (2007).
  59. J.-P. Bouchaud, Weak ergodicity breaking and aging in disordered systems, Journal de Physique I 2, 1705 (1992).
  60. A. M. Kulkarni, N. M. Dixit, and C. F. Zukoski, Ergodic and non-ergodic phase transitions in globular protein suspensions, Faraday Discussions 123, 37 (2003).
  61. R. Metzler, Weak ergodicity breaking and ageing in anomalous diffusion, International Journal of Modern Physics: Conference Series 36, 1560007 (2015).
  62. H. E. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers 116, 770 (1951).
  63. E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20, 130 (1963).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.