Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive mesh refinement in binary black holes simulations

Published 9 Dec 2023 in gr-qc | (2312.05438v2)

Abstract: We discuss refinement criteria for the Berger-Rigoutsos (block-based) refinement algorithm in our numerical relativity code GR-Athena++ in the context of binary black hole merger simulations. We compare three different strategies: the "box-in-box" approach, the "sphere-in-sphere" approach and a local criterion for refinement based on the estimation of truncation error of the finite difference scheme. We extract and compare gravitational waveforms using the three different mesh refinement methods and compare their accuracy against a calibration waveform and demonstrate that the sphere-in-sphere approach provides the best strategy overall when considering computational cost and the waveform accuracy. Ultimately, we demonstrate the capability of each mesh refinement method in accurately simulating gravitational waves from binary black hole systems -- a crucial aspect for their application in next-generation detectors. We quantify the mismatch achievable with the different strategies by extrapolating the gravitational wave mismatch to higher resolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Abdul H. Mroue et al. Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy. Phys. Rev. Lett., 111(24):241104, 2013.
  2. Michael Boyle et al. The SXS Collaboration catalog of binary black hole simulations. Class. Quant. Grav., 36(19):195006, 2019.
  3. Georgia Tech Catalog of Gravitational Waveforms. Class. Quant. Grav., 33(20):204001, 2016.
  4. The RIT binary black hole simulations catalog. Class. Quant. Grav., 34(22):224001, 2017.
  5. Eleanor Hamilton et al. A catalogue of precessing black-hole-binary numerical-relativity simulations. 3 2023.
  6. Deborah Ferguson et al. Second MAYA Catalog of Binary Black Hole Numerical Relativity Waveforms. 9 2023.
  7. Andrea Taracchini et al. Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys. Rev. D, 89(6):061502, 2014.
  8. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D, 89(8):084006, 2014.
  9. Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms. Phys. Rev. Lett., 113(15):151101, 2014.
  10. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D, 93(4):044007, 2016.
  11. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Phys. Rev. D, 95(2):024010, 2017.
  12. Alejandro Bohé et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D, 95(4):044028, 2017.
  13. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes. Phys. Rev. D, 96(12):124010, 2017.
  14. First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Phys. Rev. Lett., 120(16):161102, 2018.
  15. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Phys. Rev. D, 100(2):024059, 2019.
  16. Alessandro Nagar et al. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects. Phys. Rev. D, 98(10):104052, 2018.
  17. Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. D, 99(6):064045, 2019.
  18. Effective-one-body waveforms from dynamical captures in black hole binaries. Phys. Rev. D, 103(6):064013, 2021.
  19. Multimode frequency-domain model for the gravitational wave signal from nonprecessing black-hole binaries. Phys. Rev. D, 102(6):064002, 2020.
  20. Geraint Pratten et al. Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes. Phys. Rev. D, 103(10):104056, 2021.
  21. Effective-one-body waveforms for precessing coalescing compact binaries with post-Newtonian twist. Phys. Rev. D, 106(2):024020, 2022.
  22. Lorenzo Pompili et al. Laying the foundation of the effective-one-body waveform models SEOBNRv5: Improved accuracy and efficiency for spinning nonprecessing binary black holes. Phys. Rev. D, 108(12):124035, 2023.
  23. Enhancing the SEOBNRv5 effective-one-body waveform model with second-order gravitational self-force fluxes. Phys. Rev. D, 108(12):124038, 2023.
  24. Next generation of accurate and efficient multipolar precessing-spin effective-one-body waveforms for binary black holes. Phys. Rev. D, 108(12):124037, 2023.
  25. PhenomXO4a: a phenomenological gravitational-wave model for precessing black-hole binaries with higher multipoles and asymmetries. 12 2023.
  26. Analytic systematics in next generation of effective-one-body gravitational waveform models for future observations. Phys. Rev. D, 108(12):124018, 2023.
  27. B. P. Abbott et al. Tests of general relativity with GW150914. Phys. Rev. Lett., 116(22):221101, 2016. [Erratum: Phys.Rev.Lett. 121, 129902 (2018)].
  28. B. P. Abbott et al. Tests of General Relativity with GW170817. Phys. Rev. Lett., 123(1):011102, 2019.
  29. Gravitational waveform accuracy requirements for future ground-based detectors. Phys. Rev. Res., 2(2):023151, 2020.
  30. B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
  31. B. P. Abbott et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett., 116(24):241103, 2016.
  32. Benjamin P. Abbott et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett., 118(22):221101, 2017. [Erratum: Phys.Rev.Lett. 121, 129901 (2018)].
  33. B. . P. . Abbott et al. GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence. Astrophys. J. Lett., 851:L35, 2017.
  34. B. P. Abbott et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett., 119(14):141101, 2017.
  35. B. P. Abbott et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett., 848(2):L12, 2017.
  36. Pau Amaro-Seoane et al. Laser Interferometer Space Antenna. 2 2017.
  37. Michele Maggiore et al. Science Case for the Einstein Telescope. JCAP, 03:050, 2020.
  38. David Reitze et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc., 51(7):035, 2019.
  39. Bernd Bruegmann. Adaptive mesh and geodesically sliced Schwarzschild space-time in (3+1)-dimensions. Phys. Rev. D, 54:7361–7372, 1996.
  40. Calibration of Moving Puncture Simulations. Phys. Rev. D, 77:024027, 2008.
  41. Adaptive hp refinement for spectral elements in numerical relativity. Phys. Rev. D, 107(10):104043, 2023.
  42. Massively parallel simulations of binary black holes with adaptive wavelet multiresolution. Phys. Rev. D, 107(6):064035, 2023.
  43. The einstein toolkit, May 2023. To find out more, visit http://einsteintoolkit.org.
  44. Evolutions in 3-D numerical relativity using fixed mesh refinement. Class. Quant. Grav., 21:1465–1488, 2004.
  45. Frank Loffler et al. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Class. Quant. Grav., 29:115001, 2012.
  46. GR-Athena++: Puncture Evolutions on Vertex-centered Oct-tree Adaptive Mesh Refinement. Astrophys. J. Supp., 257(2):25, 2021.
  47. GRChombo : Numerical Relativity with Adaptive Mesh Refinement. Class. Quant. Grav., 32(24):245011, 2015.
  48. The new discontinuous Galerkin methods based numerical relativity program Nmesh. Class. Quant. Grav., 40(2):025004, 2023.
  49. SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems. Phys. Rev. D, 97(6):064036, 2018.
  50. A Simflowny-based finite-difference code for high-performance computing in numerical relativity. Class. Quant. Grav., 35(18):185007, 2018.
  51. Black hole evolution by spectral methods. Phys. Rev. D, 62:084032, 2000.
  52. Lawrence E. Kidder et al. SpECTRE: A Task-based Discontinuous Galerkin Code for Relativistic Astrophysics. J. Comput. Phys., 335:84–114, 2017.
  53. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. J. Comput. Phys., 53:484, 1984.
  54. The athena++ adaptive mesh refinement framework: Design and magnetohydrodynamic solvers. The Astrophysical Journal Supplement Series, 249, 2020.
  55. Adaptive blocks: A high performance data structure. ACM/IEEE SC 1997 Conference (SC’97), pages 57–57, 1997.
  56. M. Berger and I. Rigoutsos. An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1278–1286, 1991.
  57. Lessons for adaptive mesh refinement in numerical relativity. Class. Quant. Grav., 39(13):135006, 2022.
  58. Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett., 96:111101, 2006.
  59. A Reinvestigation of Moving Punctured Black Holes with a New Code. Phys. Rev. D, 78:124011, 2008.
  60. Richard Burden. Numerical analysis. Brooks/Cole, Cengage Learning, Boston, MA, 2011.
  61. Constraint violation in free evolution schemes: Comparing BSSNOK with a conformal decomposition of Z4. Phys. Rev. D, 81:084003, 2010.
  62. Compact binary evolutions with the Z4c formulation. Phys. Rev. D, 88:084057, 2013.
  63. Miguel Alcubierre. Introduction to 3+1 Numerical Relativity. Oxford University Press, 04 2008.
  64. J. David Brown. Puncture Evolution of Schwarzschild Black Holes. Phys. Rev. D, 77:044018, 2008.
  65. A Single-domain spectral method for black hole puncture data. Phys. Rev. D, 70:064011, 2004.
  66. Simple procedures to reduce eccentricity of binary black hole simulations. Phys. Rev. D, 99(2):023003, 2019.
  67. An Approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3:566–578, 1962.
  68. Matched filtering of numerical relativity templates of spinning binary black holes. Phys. Rev. D, 76:084020, 2007.
  69. Model Waveform Accuracy Standards for Gravitational Wave Data Analysis. Phys. Rev. D, 78:124020, 2008.
  70. Constructing Gravitational Waves from Generic Spin-Precessing Compact Binary Inspirals. Phys. Rev. D, 95(10):104004, 2017.
  71. Assessing the readiness of numerical relativity for LISA and 3G detectors. Phys. Rev. D, 104(4):044037, 2021.
Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.