Sub-ppm Nanomechanical Absorption Spectroscopy of Silicon Nitride (2312.05249v1)
Abstract: Material absorption is a key limitation in nanophotonic systems; however, its characterization is often obscured by scattering and diffraction loss. Here we show that nanomechanical frequency spectroscopy can be used to characterize the absorption of a dielectric thin film at the parts-per-million (ppm) level, and use it to characterize the absorption of stoichiometric silicon nitride (Si$_3$N$_4$), a ubiquitous low-loss optomechanical material. Specifically, we track the frequency shift of a high-$Q$ Si$_3$N$_4$ trampoline resonator in response to photothermal heating by a $\sim10$ mW laser beam, and infer the absorption of the thin film from a model including thermal stress relaxation and both radiative and conductive heat transfer. A key insight is the presence of two thermalization timescales, a rapid ($\sim0.1$ sec) timescale due to radiative thermalization of the Si$_3$N$_4$ thin film, and a slow ($\sim100$ sec) timescale due to parasitic heating of the Si device chip. We infer the extinction coefficient of Si$_3$N$_4$ to be $\sim0.1-1$ ppm in the 532 - 1550 nm wavelength range, comparable to bounds set by waveguide resonators and notably lower than estimates with membrane-in-the-middle cavity optomechanical systems. Our approach is applicable to a broad variety of nanophotonic materials and may offer new insights into their potential.
- M.-H. Chien, M. Brameshuber, B. K. Rossboth, G. J. Schütz, and S. Schmid, “Single-molecule optical absorption imaging by nanomechanical photothermal sensing,” Proceedings of the National Academy of Sciences 115, 11150–11155 (2018).
- A. Casci Ceccacci, A. Cagliani, P. Marizza, S. Schmid, and A. Boisen, “Thin film analysis by nanomechanical infrared spectroscopy,” ACS Omega 4, 7628–7635 (2019).
- J. N. Kirchhof, Y. Yu, D. Yagodkin, N. Stetzuhn, D. B. de Araújo, K. Kanellopulos, S. Manas-Valero, E. Coronado, H. van der Zant, S. Reich, et al., “Nanomechanical absorption spectroscopy of 2d materials with femtowatt sensitivity,” 2D Materials 10, 035012 (2023).
- R. G. West, K. Kanellopulos, and S. Schmid, “Photothermal microscopy and spectroscopy with nanomechanical resonators,” The Journal of Physical Chemistry C (2023).
- L. Sementilli, E. Romero, and W. P. Bowen, “Nanomechanical dissipation and strain engineering,” Advanced Functional Materials 32, 2105247 (2022).
- K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nature Physics 8, 168–172 (2012).
- H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Photonics 10, 709–714 (2016).
- A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-q microcavities,” Optics Letters 31, 1896–1898 (2006).
- A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Optics Express 16, 11930–11936 (2008).
- C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise sin trampoline resonators for sensing and optomechanics,” Physical Review X 6, 021001 (2016).
- C. M. Pluchar, A. R. Agrawal, E. Schenk, and D. J. Wilson, “Towards cavity-free ground-state cooling of an acoustic-frequency silicon nitride membrane,” Applied Optics 59, G107–G111 (2020).
- M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Reviews of Modern Physics 86, 1391 (2014).
- C. Zhang, M. Giroux, T. A. Nour, and R. St-Gelais, “Radiative heat transfer in freestanding silicon nitride membranes,” Physical Review Applied 14, 024072 (2020).
- M. Piller, P. Sadeghi, R. G. West, N. Luhmann, P. Martini, O. Hansen, and S. Schmid, “Thermal radiation dominated heat transfer in nanomechanical silicon nitride drum resonators,” Applied Physics Letters 117 (2020).
- Y. S. Klaß, J. Doster, M. Bückle, R. Braive, and E. M. Weig, “Determining young’s modulus via the eigenmode spectrum of a nanomechanical string resonator,” Applied Physics Letters 121 (2022).
- F. Zhang, S. Krishnaswamy, and C. M. Lilley, “Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films,” Ultrasonics 45, 66–76 (2006).
- N. Snell, C. Zhang, G. Mu, A. Bouchard, and R. St-Gelais, “Heat transport in silicon nitride drum resonators and its influence on thermal fluctuation-induced frequency noise,” Physical Review Applied 17, 044019 (2022).
- C. Zhang, A. Bouchard, M. Giroux, T. A. Nour, and R. St-Gelais, “Erratum: Radiative heat transfer in freestanding silicon nitride membranes [phys. rev. appl. 14, 024072 (2020)],” Physical Review Applied 16, 019901 (2021).
- M. Vivekananthan, C. Ahilan, S. Sakthivelu, and M. Saravanakumar, “A primary study of density and compressive strength of the silicon nitride and titanium nitride ceramic composite,” Materials Today: Proceedings 33, 2741–2745 (2020).
- H. Ftouni, C. Blanc, D. Tainoff, A. D. Fefferman, M. Defoort, K. J. Lulla, J. Richard, E. Collin, and O. Bourgeois, “Thermal conductivity of silicon nitride membranes is not sensitive to stress,” Physical Review B 92, 125439 (2015).
- A. Kuwabara, K. Matsunaga, and I. Tanaka, “Lattice dynamics and thermodynamical properties of silicon nitride polymorphs,” Physical Review B 78, 064104 (2008).
- H. R. Philipp, “Optical properties of silicon nitride,” Journal of the Electrochemical Society 120, 295 (1973).
- J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio si 3 n 4 waveguides,” Optics Express 19, 3163–3174 (2011).
- W. Xiong, H. Jiang, T. Li, P. Zhang, Q. Xu, X. Zhao, G. Wang, Y. Liu, Y. Luo, Z. Li, et al., “Sin x films and membranes for photonic and mems applications,” Journal of Materials Science: Materials in Electronics 31, 90–97 (2020).
- L. Wang, W. Xie, D. Van Thourhout, Y. Zhang, H. Yu, and S. Wang, “Nonlinear silicon nitride waveguides based on a pecvd deposition platform,” Optics Express 26, 9645–9654 (2018).
- N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various si/sub 3/n/sub 4/waveguide geometries grown within a cmos fabrication pilot line,” Journal of Lightwave Technology 22, 1734–1740 (2004a).
- D. Bulla, B. Borges, M. Romero, N. Morimoto, L. Neto, and A. Cortes, “Design and fabrication of sio/sub 2//si/sub 3/n/sub 4/cvd optical waveguides,” in 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Vol. 2 (IEEE, 1999) pp. 454–457.
- T. I. T. Inukai and K. O. K. Ono, “Optical characteristics of amorphous silicon nitride thin films prepared by electron cyclotron resonance plasma chemical vapor deposition,” Japanese Journal of Applied Physics 33, 2593 (1994).
- N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional si3n4 waveguides,” Materials Science in Semiconductor Processing 7, 453–458 (2004b).
- K. A. Buzaverov, A. S. Baburin, E. V. Sergeev, S. S. Avdeev, E. S. Lotkov, M. Andronik, V. E. Stukalova, D. A. Baklykov, I. V. Dyakonov, N. N. Skryabin, et al., “Low-loss silicon nitride photonic ics for near-infrared wavelength bandwidth,” Optics Express 31, 16227–16242 (2023).
- J. A. Smith, H. Francis, G. Navickaite, and M. J. Strain, “Sin foundry platform for high performance visible light integrated photonics,” Optical Materials Express 13, 458–468 (2023).
- Z. Yong, H. Chen, X. Luo, A. Govdeli, H. Chua, S. S. Azadeh, A. Stalmashonak, G.-Q. Lo, J. K. Poon, and W. D. Sacher, “Power-efficient silicon nitride thermo-optic phase shifters for visible light,” Optics Express 30, 7225–7237 (2022).
- W. D. Sacher, X. Luo, Y. Yang, F.-D. Chen, T. Lordello, J. C. Mak, X. Liu, T. Hu, T. Xue, P. G.-Q. Lo, et al., “Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers,” Optics Express 27, 37400–37418 (2019).
- A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, et al., “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photonics Journal 5, 2202809–2202809 (2013).
- J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” Nature Communications 12, 2236 (2021).
- X. Ji, Y. Okawachi, A. Gil-Molina, M. Corato-Zanarella, S. Roberts, A. L. Gaeta, and M. Lipson, “Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries,” Laser & Photonics Reviews 17, 2200544 (2023).
- S. Zhang, T. Bi, I. Harder, O. Lohse, F. Gannott, A. Gumann, Y. Zhang, and P. Del’Haye, “Room-temperature sputtered ultralow-loss silicon nitride,” in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2023) pp. 1–1.
- M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment,” Journal of Optics 15, 025704 (2012).
- D. J. Wilson, C. A. Regal, S. B. Papp, and H. Kimble, “Cavity optomechanics with stoichiometric sin films,” Physical Review Letters 103, 207204 (2009).
- D. J. Wilson, Cavity optomechanics with high-stress silicon nitride films (California Institute of Technology, 2012).
- E. Serra, M. Bawaj, A. Borrielli, G. Di Giuseppe, S. Forte, N. Kralj, N. Malossi, L. Marconi, F. Marin, F. Marino, et al., “Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications,” AIP Advances 6 (2016).
- J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nature Physics 6, 707–712 (2010).
- M. J. Weaver, F. Buters, F. Luna, H. Eerkens, K. Heeck, S. de Man, and D. Bouwmeester, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Communications 8, 824 (2017).
- C. Stambaugh, M. Durand, U. Kemiktarak, and J. Lawall, “Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction,” Applied Optics 53, 4930–4938 (2014).
- J. Steinlechner, C. Krüger, I. W. Martin, A. Bell, J. Hough, H. Kaufer, S. Rowan, R. Schnabel, and S. Steinlechner, “Optical absorption of silicon nitride membranes at 1064 nm and at 1550 nm,” Physical Review D 96, 022007 (2017).
- H. Nejadriahi, A. Friedman, R. Sharma, S. Pappert, Y. Fainman, and P. Yu, “Thermo-optic properties of silicon-rich silicon nitride for on-chip applications,” Optics Express 28, 24951–24960 (2020).
- P. Sadeghi, A. Demir, L. G. Villanueva, H. Kähler, and S. Schmid, “Frequency fluctuations in nanomechanical silicon nitride string resonators,” Physical Review B 102, 214106 (2020).
- C. Zhang and R. St-Gelais, “Demonstration of frequency stability limited by thermal fluctuation noise in silicon nitride nanomechanical resonators,” Applied Physics Letters 122 (2023).
- A. Beccari, D. A. Visani, S. A. Fedorov, M. J. Bereyhi, V. Boureau, N. J. Engelsen, and T. J. Kippenberg, “Strained crystalline nanomechanical resonators with quality factors above 10 billion,” Nature Physics 18, 436–441 (2022).
- J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-q optomechanical gaas nanomembranes,” Applied Physics Letters 99 (2011).
- G. D. Cole, P.-L. Yu, C. Gärtner, K. Siquans, R. Moghadas Nia, J. Schmöle, J. Hoelscher-Obermaier, T. P. Purdy, W. Wieczorek, C. A. Regal, et al., “Tensile-strained inxga1- xp membranes for cavity optomechanics,” Applied Physics Letters 104 (2014).
- M. Xu, D. Shin, P. M. Sberna, R. van der Kolk, A. Cupertino, M. A. Bessa, and R. A. Norte, “High-strength amorphous silicon carbide for nanomechanics,” Advanced Materials , 2306513 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.