Fast and robust cat state preparation utilizing higher order nonlinearities (2312.05218v1)
Abstract: Cat states are a valuable resource for quantum metrology applications, promising to enable sensitivity down to the Heisenberg limit. Moreover, Schr\"odinger cat states, based on a coherent superposition of coherent states, show robustness against phase-flip errors making them a promising candidate for bosonic quantum codes. A pathway to realize cat states is via utilizing single Kerr-type anharmonicities as found in superconducting devices as well as in Rydberg atoms. Such platforms nevertheless utilize only the second order anharmonicity, which limits the time it takes for a cat state to be prepared. Here we show how proper tuning of multiple higher order nonlinear interactions leads to shorter cat state preparation time. We also discuss practical aspects including an optimal control scheme which allows us to start the state preparation from the vacuum state under standard single mode driving. Lastly, we propose an ensemble of Rydberg atoms that exhibits higher order nonlinearities as a platform to prepare cat states in the laboratory.
- S. van Enk and O. Hirota, Physical Review A 64, 10.1103/physreva.64.022313 (2001).
- B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
- A. Joshi, Physics Letters A 270, 249 (2000).
- B. Josephson, Physics Letters 1, 251 (1962).
- D. S. Schlegel, F. Minganti, and V. Savona, Phys. Rev. A 106, 022431 (2022).
- V. Krotov, Global Methods in Optimal Control Theory (CRC Press, 1995).
- A. I. Konnov and V. F. Krotov, Autom. Remote Control 60, 1427 (1999).
- M. Morgado and S. Whitlock, AVS Quantum Science 3, 023501 (2021).
- M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
- C. S. Adams, J. D. Pritchard, and J. P. Shaffer, J. Phys. B: At. Mol. Opt. Phys. 53, 012002 (2019).
- G. S. Agarwal, R. R. Puri, and R. P. Singh, Phys. Rev. A 56, 2249 (1997).
- J. E. Johnson and S. L. Rolston, Phys. Rev. A 82, 033412 (2010).
- H. Saßmannshausen, J. Deiglmayr, and F. Merkt, Eur. Phys. J. Spec. Top. 225, 2891 (2016).
- S.Chaturvedi and V.Srinivasan, Journal of Modern Optics 38, 777 (1991).
- G. D’Ariano, P. Lo Presti, and M. Sacchi, Physics Letters A 272, 32 (2000).
- S. Alipour, M. Mehboudi, and A. T. Rezakhani, Phys. Rev. Lett. 112, 120405 (2014).
- S. Bose, K. Jacobs, and P. L. Knight, Physical Review A 56, 4175–4186 (1997).
- M. Alexanian, Mean number and number variance of squeezed coherent photons in a thermal state of photons (2020), arXiv:2004.07724 [quant-ph] .
- G. Dirr and U. Helmke, GAMM-Mitteilungen 31, 59 (2008).
- S. Merkel, Quantum Control of D-Dimensional Quantum Systems with Application to Alkali Atomic Spins, Ph.D. thesis, The University of New Mexico (2009), arxiv:0906.4790 [quant-ph] .
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.