Quasiparticles-mediated thermal diode effect in Weyl Josephson junctions (2312.05008v2)
Abstract: We theoretically show quasiparticles-driven thermal diode effect (TDE) in an inversion symmetry-broken (ISB) Weyl superconductor (WSC)-Weyl semimetal (WSM)-WSC Josephson junction. A Zeeman field perpendicular to the WSM region of the thermally-biased Weyl Josephson junction (WJJ) induces an asymmetry between the forward and reverse thermal currents, which is responsible for the TDE. Most interestingly, we show that the sign and magnitude of the thermal diode rectification coefficient is highly tunable by the superconducting phase difference and external Zeeman field, and also strongly depends on the junction length. The tunability of the rectification, particularly, the sign changing behavior associated with higher rectification enhances the potential of our WJJ thermal diode to use as functional switching components in thermal devices.
- F. Braun, “Ueber die stromleitung durch schwefelmetalle,” Annalen der Physik 229, 556–563 (1875).
- J. Scaff and R. Ohl, “Development of silicon crystal rectifiers for microwave radar receivers,” The Bell System Technical Journal 26, 1–30 (1947).
- F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota, T. Moriyama, Y. Yanase, and T. Ono, “Observation of superconducting diode effect,” Nature 584, 373–376 (2020).
- Y.-Y. Lyu, J. Jiang, Y.-L. Wang, Z.-L. Xiao, S. Dong, Q.-H. Chen, M. V. Milošević, H. Wang, R. Divan, J. E. Pearson, P. Wu, F. M. Peeters, and W.-K. Kwok, “Superconducting diode effect via conformal-mapped nanoholes,” Nature Communications 12, 2703 (2021).
- L. Bauriedl, C. Bäuml, L. Fuchs, C. Baumgartner, N. Paulik, J. M. Bauer, K.-Q. Lin, J. M. Lupton, T. Taniguchi, K. Watanabe, C. Strunk, and N. Paradiso, “Supercurrent diode effect and magnetochiral anisotropy in few-layer nbse2,” Nature Communications 13, 4266 (2022).
- C. Baumgartner, L. Fuchs, A. Costa, S. Reinhardt, S. Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra, P. E. Faria Junior, D. Kochan, J. Fabian, N. Paradiso, and C. Strunk, “Supercurrent rectification and magnetochiral effects in symmetric josephson junctions,” Nature Nanotechnology 17, 39–44 (2022).
- B. Pal, A. Chakraborty, P. K. Sivakumar, M. Davydova, A. K. Gopi, A. K. Pandeya, J. A. Krieger, Y. Zhang, M. Date, S. Ju, N. Yuan, N. B. M. Schröter, L. Fu, and S. S. P. Parkin, “Josephson diode effect from cooper pair momentum in a topological semimetal,” Nature Physics 18, 1228–1233 (2022).
- J.-X. Lin, P. Siriviboon, H. D. Scammell, S. Liu, D. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, M. S. Scheurer, and J. I. A. Li, “Zero-field superconducting diode effect in small-twist-angle trilayer graphene,” Nature Physics 18, 1221–1227 (2022).
- H. Wu, Y. Wang, Y. Xu, P. K. Sivakumar, C. Pasco, U. Filippozzi, S. S. P. Parkin, Y.-J. Zeng, T. McQueen, and M. N. Ali, “The field-free josephson diode in a van der waals heterostructure,” Nature 604, 653–656 (2022).
- K.-R. Jeon, J.-K. Kim, J. Yoon, J.-C. Jeon, H. Han, A. Cottet, T. Kontos, and S. S. P. Parkin, “Zero-field polarity-reversible josephson supercurrent diodes enabled by a proximity-magnetized pt barrier,” Nature Materials 21, 1008–1013 (2022).
- B. Turini, S. Salimian, M. Carrega, A. Iorio, E. Strambini, F. Giazotto, V. Zannier, L. Sorba, and S. Heun, “Josephson diode effect in high-mobility insb nanoflags,” Nano Letters 22, 8502–8508 (2022).
- A. Sundaresh, J. I. Väyrynen, Y. Lyanda-Geller, and L. P. Rokhinson, “Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors,” Nature Communications 14, 1628 (2023).
- G. P. Mazur, N. van Loo, D. van Driel, J. Y. Wang, G. Badawy, S. Gazibegovic, E. P. A. M. Bakkers, and L. P. Kouwenhoven, “The gate-tunable josephson diode,” (2022), arXiv:2211.14283 [cond-mat.supr-con] .
- M. S. Anwar, T. Nakamura, R. Ishiguro, S. Arif, J. W. A. Robinson, S. Yonezawa, M. Sigrist, and Y. Maeno, “Spontaneous superconducting diode effect in non-magnetic nb/ru/sr2ruo4 topological junctions,” Communications Physics 6, 290 (2023).
- A. Banerjee, M. Geier, M. A. Rahman, D. S. Sanchez, C. Thomas, T. Wang, M. J. Manfra, K. Flensberg, and C. M. Marcus, “Control of andreev bound states using superconducting phase texture,” Phys. Rev. Lett. 130, 116203 (2023).
- S. Ghosh, V. Patil, A. Basu, Kuldeep, A. Dutta, D. A. Jangade, R. Kulkarni, A. Thamizhavel, J. F. Steiner, F. von Oppen, and M. M. Deshmukh, “High-temperature josephson diode,” (2023), arXiv:2210.11256 [cond-mat.supr-con] .
- Y. Hou, F. Nichele, H. Chi, A. Lodesani, Y. Wu, M. F. Ritter, D. Z. Haxell, M. Davydova, S. Ilić, O. Glezakou-Elbert, A. Varambally, F. S. Bergeret, A. Kamra, L. Fu, P. A. Lee, and J. S. Moodera, “Ubiquitous superconducting diode effect in superconductor thin films,” Phys. Rev. Lett. 131, 027001 (2023).
- A. Costa, C. Baumgartner, S. Reinhardt, J. Berger, S. Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra, J. Fabian, D. Kochan, N. Paradiso, and C. Strunk, “Sign reversal of the josephson inductance magnetochiral anisotropy and 0–π𝜋\piitalic_π-like transitions in supercurrent diodes,” Nature Nanotechnology (2023), 10.1038/s41565-023-01451-x.
- M. Nadeem, M. S. Fuhrer, and X. Wang, “The superconducting diode effect,” Nature Reviews Physics , 1–20 (2023).
- E. Strambini, M. Spies, N. Ligato, S. Ilić, M. Rouco, C. González-Orellana, M. Ilyn, C. Rogero, F. Bergeret, J. Moodera, et al., “Superconducting spintronic tunnel diode,” Nature communications 13, 2431 (2022).
- H. F. Legg, D. Loss, and J. Klinovaja, “Superconducting diode effect due to magnetochiral anisotropy in topological insulators and rashba nanowires,” Phys. Rev. B 106, 104501 (2022).
- H. Narita, J. Ishizuka, R. Kawarazaki, D. Kan, Y. Shiota, T. Moriyama, Y. Shimakawa, A. V. Ognev, A. S. Samardak, Y. Yanase, et al., “Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers,” Nature Nanotechnology 17, 823–828 (2022).
- S. Ilić and F. S. Bergeret, “Theory of the supercurrent diode effect in rashba superconductors with arbitrary disorder,” Phys. Rev. Lett. 128, 177001 (2022).
- A. Daido, Y. Ikeda, and Y. Yanase, “Intrinsic superconducting diode effect,” Phys. Rev. Lett. 128, 037001 (2022).
- Y. Ikeda, A. Daido, and Y. Yanase, “Intrinsic superconducting diode effect in disordered systems,” arXiv:2212.09211 (2022).
- B. Zinkl, K. Hamamoto, and M. Sigrist, “Symmetry conditions for the superconducting diode effect in chiral superconductors,” Phys. Rev. Res. 4, 033167 (2022a).
- T. de Picoli, Z. Blood, Y. Lyanda-Geller, and J. I. Väyrynen, “Superconducting diode effect in quasi-one-dimensional systems,” Phys. Rev. B 107, 224518 (2023).
- J. J. He, Y. Tanaka, and N. Nagaosa, “The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes,” Nature Communications 14, 3330 (2023).
- T. Oh and N. Nagaosa, “Nonreciprocal transport in u (1) gauge theory of high-tc cuprates,” arXiv:2311.07882 (2023).
- J. Hu, C. Wu, and X. Dai, “Proposed design of a josephson diode,” Phys. Rev. Lett. 99, 067004 (2007).
- K. Misaki and N. Nagaosa, “Theory of the nonreciprocal josephson effect,” Phys. Rev. B 103, 245302 (2021).
- A. A. Kopasov, A. G. Kutlin, and A. S. Mel’nikov, “Geometry controlled superconducting diode and anomalous josephson effect triggered by the topological phase transition in curved proximitized nanowires,” Phys. Rev. B 103, 144520 (2021).
- Y. Zhang, Y. Gu, P. Li, J. Hu, and K. Jiang, “General theory of josephson diodes,” Phys. Rev. X 12, 041013 (2022).
- D. Wang, Q.-H. Wang, and C. Wu, “Symmetry constraints on direct-current josephson diodes,” (2022), arXiv:2209.12646 [cond-mat.supr-con] .
- Y.-J. Wei, H.-L. Liu, J. Wang, and J.-F. Liu, “Supercurrent rectification effect in graphene-based josephson junctions,” Phys. Rev. B 106, 165419 (2022).
- M. Davydova, S. Prembabu, and L. Fu, “Universal josephson diode effect,” Science Advances 8, eabo0309 (2022).
- K. Halterman, M. Alidoust, R. Smith, and S. Starr, “Supercurrent diode effect, spin torques, and robust zero-energy peak in planar half-metallic trilayers,” Phys. Rev. B 105, 104508 (2022).
- T. Karabassov, I. V. Bobkova, A. A. Golubov, and A. S. Vasenko, “Hybrid helical state and superconducting diode effect in superconductor/ferromagnet/topological insulator heterostructures,” Phys. Rev. B 106, 224509 (2022).
- R. S. Souto, M. Leijnse, and C. Schrade, “Josephson diode effect in supercurrent interferometers,” Phys. Rev. Lett. 129, 267702 (2022).
- B. Zinkl, K. Hamamoto, and M. Sigrist, “Symmetry conditions for the superconducting diode effect in chiral superconductors,” Phys. Rev. Res. 4, 033167 (2022b).
- Y. V. Fominov and D. S. Mikhailov, “Asymmetric higher-harmonic squid as a josephson diode,” Phys. Rev. B 106, 134514 (2022).
- Y. Tanaka, B. Lu, and N. Nagaosa, “Theory of giant diode effect in d𝑑ditalic_d-wave superconductor junctions on the surface of a topological insulator,” Phys. Rev. B 106, 214524 (2022).
- N. F. Q. Yuan and L. Fu, “Supercurrent diode effect and finite-momentum superconductors,” Proceedings of the National Academy of Sciences 119, e2119548119 (2022).
- B. Lu, S. Ikegaya, P. Burset, Y. Tanaka, and N. Nagaosa, “Tunable josephson diode effect on the surface of topological insulators,” Phys. Rev. Lett. 131, 096001 (2023).
- Z. Liu, L. Huang, and J. Wang, “Josephson diode effect in topological superconductor,” arXiv:2311.09009 (2023).
- A. Zazunov, J. Rech, T. Jonckheere, B. Grémaud, T. Martin, and R. Egger, “Nonreciprocal charge transport and subharmonic structure in voltage-biased josephson diodes,” (2023a), arXiv:2307.15386 [cond-mat.supr-con] .
- A. Zazunov, J. Rech, T. Jonckheere, B. Grémaud, T. Martin, and R. Egger, “Approaching ideal rectification in superconducting diodes through multiple andreev reflections,” (2023b), arXiv:2307.14698 [cond-mat.supr-con] .
- P. A. Volkov, Étienne Lantagne-Hurtubise, T. Tummuru, S. Plugge, J. H. Pixley, and M. Franz, “Josephson diode effects in twisted nodal superconductors,” (2023), arXiv:2307.01261 [cond-mat.supr-con] .
- J.-X. Hu, Z.-T. Sun, Y.-M. Xie, and K. T. Law, “Josephson diode effect induced by valley polarization in twisted bilayer graphene,” Phys. Rev. Lett. 130, 266003 (2023a).
- J. Cayao, N. Nagaosa, and Y. Tanaka, “Enhancing the josephson diode effect with majorana bound states,” (2023), arXiv:2309.15567 [cond-mat.supr-con] .
- Q. Cheng and Q.-F. Sun, “Josephson diode based on conventional superconductors and a chiral quantum dot,” Phys. Rev. B 107, 184511 (2023).
- M. Trahms, L. Melischek, J. F. Steiner, B. Mahendru, I. Tamir, N. Bogdanoff, O. Peters, G. Reecht, C. B. Winkelmann, F. von Oppen, et al., “Diode effect in josephson junctions with a single magnetic atom,” Nature 615, 628–633 (2023).
- H. F. Legg, K. Laubscher, D. Loss, and J. Klinovaja, “Parity protected superconducting diode effect in topological josephson junctions,” arXiv:2301.13740 (2023).
- J. B. Tjernshaugen, M. Amundsen, and J. Linder, “Superconducting phase diagram and spin diode effect via spin accumulation,” arXiv:2311.01502 (2023).
- N. F. Q. Yuan, “Surface supercurrent diode effect,” (2023a), arXiv:2305.04219 [cond-mat.supr-con] .
- N. F. Q. Yuan, “Edelstein effect and supercurrent diode effect,” (2023b), arXiv:2311.11087 [cond-mat.supr-con] .
- F. Pop, P. Auban-Senzier, E. Canadell, G. L. J. A. Rikken, and N. Avarvari, “Electrical magnetochiral anisotropy in a bulk chiral molecular conductor,” Nature Communications 5, 3757 (2014).
- T. Morimoto and N. Nagaosa, “Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric weyl semimetals,” Phys. Rev. Lett. 117, 146603 (2016).
- G. L. J. A. Rikken, J. Fölling, and P. Wyder, “Electrical magnetochiral anisotropy,” Phys. Rev. Lett. 87, 236602 (2001).
- X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83, 205101 (2011).
- A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,” Phys. Rev. Lett. 107, 127205 (2011).
- S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang, C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, et al., “Experimental discovery of a topological weyl semimetal state in tap,” Science advances 1, e1501092 (2015).
- B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, “Experimental discovery of weyl semimetal taas,” Phys. Rev. X 5, 031013 (2015).
- B. Lu, K. Yada, A. A. Golubov, and Y. Tanaka, “Anomalous josephson effect in d𝑑ditalic_d-wave superconductor junctions on a topological insulator surface,” Phys. Rev. B 92, 100503 (2015).
- N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and dirac semimetals in three-dimensional solids,” Rev. Mod. Phys. 90, 015001 (2018).
- K. Chen, B. Karki, and P. Hosur, “Intrinsic superconducting diode effects in tilted weyl and dirac semimetals,” arXiv:2309.11501 (2023).
- F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, “Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications,” Rev. Mod. Phys. 78, 217–274 (2006).
- F. Giazotto and M. J. Martínez-Pérez, “The josephson heat interferometer,” Nature 492, 401–405 (2012).
- M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, “Rectification of electronic heat current by a hybrid thermal diode,” Nature nanotechnology 10, 303–307 (2015).
- A. Fornieri, M. J. Martínez-Pérez, and F. Giazotto, “A normal metal tunnel-junction heat diode,” Applied Physics Letters 104 (2014).
- J. Ren and J.-X. Zhu, “Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces,” Phys. Rev. B 87, 241412 (2013).
- R. Sánchez, B. Sothmann, and A. N. Jordan, “Heat diode and engine based on quantum hall edge states,” New Journal of Physics 17, 075006 (2015).
- E. Moncada-Villa and J. C. Cuevas, “Normal-metal–superconductor near-field thermal diodes and transistors,” Phys. Rev. Appl. 15, 024036 (2021).
- Y. Hu, H. Liu, B. Yang, K. Shi, M. Antezza, X. Wu, and Y. Sun, “High-rectification near-field radiative thermal diode using weyl semimetals,” Phys. Rev. Mater. 7, 035201 (2023b).
- B. Sothmann and E. M. Hankiewicz, “Fingerprint of topological andreev bound states in phase-dependent heat transport,” Phys. Rev. B 94, 081407 (2016).
- P. Dutta, A. Saha, and A. M. Jayannavar, “Thermoelectric properties of a ferromagnet-superconductor hybrid junction: Role of interfacial rashba spin-orbit interaction,” Phys. Rev. B 96, 115404 (2017).
- P. Dutta, K. R. Alves, and A. M. Black-Schaffer, “Thermoelectricity carried by proximity-induced odd-frequency pairing in ferromagnet/superconductor junctions,” Phys. Rev. B 102, 094513 (2020a).
- S. S. Pershoguba and L. I. Glazman, “Thermopower and thermal conductance of a superconducting quantum point contact,” Phys. Rev. B 99, 134514 (2019).
- F. Hajiloo, F. Hassler, and J. Splettstoesser, “Mesoscopic effects in the heat conductance of superconducting-normal-superconducting and normal-superconducting junctions,” Phys. Rev. B 99, 235422 (2019).
- A. G. Bauer and B. Sothmann, “Phase-dependent heat transport in josephson junctions with p𝑝pitalic_p-wave superconductors and superfluids,” Phys. Rev. B 99, 214508 (2019).
- M. Acciai, F. Hajiloo, F. Hassler, and J. Splettstoesser, “Phase-coherent heat circulators with normal or superconducting contacts,” Phys. Rev. B 103, 085409 (2021).
- F. Hajiloo, R. Sánchez, R. S. Whitney, and J. Splettstoesser, “Quantifying nonequilibrium thermodynamic operations in a multiterminal mesoscopic system,” Phys. Rev. B 102, 155405 (2020a).
- F. Hajiloo, P. T. Alonso, N. Dashti, L. Arrachea, and J. Splettstoesser, “Detailed study of nonlinear cooling with two-terminal configurations of topological edge states,” Phys. Rev. B 102, 155434 (2020b).
- A. Mukhopadhyay and S. Das, “Thermal signature of the majorana fermion in a josephson junction,” Phys. Rev. B 103, 144502 (2021).
- A. Mukhopadhyay and S. Das, “Thermal bias induced charge current in a josephson junction: From ballistic to disordered,” Phys. Rev. B 106, 075421 (2022).
- P. Dutta, “Phase-dependent charge and heat current in thermally biased short josephson junctions formed at helical edge states,” New Journal of Physics 25, 083024 (2023).
- R. Saxena, N. Basak, P. Chatterjee, S. Rao, and A. Saha, “Thermoelectric properties of inversion symmetry broken weyl semimetal–weyl superconductor hybrid junctions,” Phys. Rev. B 107, 195426 (2023).
- L. Bours, B. Sothmann, M. Carrega, E. Strambini, A. Braggio, E. M. Hankiewicz, L. W. Molenkamp, and F. Giazotto, “Phase-tunable thermal rectification in the topological squipt,” Phys. Rev. Appl. 11, 044073 (2019a).
- S.-B. Zhang, J. Erdder, and B. Trauzettel, “Chirality josephson current due to a novel quantum anomaly in inversion-asymmetric weyl semimetals,” Phys. Rev. Lett. 121, 226604 (2018a).
- S.-B. Zhang, F. Dolcini, D. Breunig, and B. Trauzettel, “Appearance of the universal value e2/hsuperscript𝑒2ℎe^{2}/hitalic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_h of the zero-bias conductance in a weyl semimetal-superconductor junction,” Phys. Rev. B 97, 041116 (2018b).
- M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, “Rectification of electronic heat current by a hybrid thermal diode,” Nature Nanotechnology 10, 303–307 (2015).
- L. Bours, B. Sothmann, M. Carrega, E. Strambini, A. Braggio, E. M. Hankiewicz, L. W. Molenkamp, and F. Giazotto, “Phase-tunable thermal rectification in the topological squipt,” Phys. Rev. Appl. 11, 044073 (2019b).
- T. Meng and L. Balents, “Weyl superconductors,” Phys. Rev. B 86, 054504 (2012).
- P. Dutta and A. M. Black-Schaffer, “Signature of odd-frequency equal-spin triplet pairing in the josephson current on the surface of weyl nodal loop semimetals,” Phys. Rev. B 100, 104511 (2019).
- P. Dutta, F. Parhizgar, and A. M. Black-Schaffer, “Finite bulk josephson currents and chirality blockade removal from interorbital pairing in magnetic weyl semimetals,” Phys. Rev. B 101, 064514 (2020b).
- S. A. Yang, H. Pan, and F. Zhang, “Dirac and weyl superconductors in three dimensions,” Phys. Rev. Lett. 113, 046401 (2014).
- U. Khanna, A. Kundu, S. Pradhan, and S. Rao, “Proximity-induced superconductivity in weyl semimetals,” Phys. Rev. B 90, 195430 (2014).
- G. Bednik, A. A. Zyuzin, and A. A. Burkov, “Superconductivity in weyl metals,” Phys. Rev. B 92, 035153 (2015).
- A. Chen and M. Franz, “Superconducting proximity effect and majorana flat bands at the surface of a weyl semimetal,” Phys. Rev. B 93, 201105 (2016).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.