Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The origin and evolution of wide Jupiter Mass Binary Objects in young stellar clusters (2312.04645v2)

Published 7 Dec 2023 in astro-ph.EP, astro-ph.GA, and astro-ph.SR

Abstract: The recently observed population of 540 free-floating Jupiter-mass objects, including 40 dynamically soft pairs in the Trapezium cluster have raised interesting questions on their formation and evolution. We test various scenarios for the origin and survivability of these free floating Jupiter-mass objects and Jupiter-mass Binary Objects (JuMBOs) in the Trapezium cluster. The numerical calculations are performed by direct N-body integration of the stars and planets in the Trapezium cluster starting with a wide variety of planets in various configurations. We discuss four models: SPP, in which selected stars have two outer orbiting Jupiter-mass planets; SPM, where selected stars are orbited by Jupiter-mass planet-moon pairs; ISF in which JuMBOs form in situ with the stars, and FFC, where we introduce a population of free-floating single Jupiter-mass objects, but no initialized binaries. Models FFC and SPP fail to produce enough JuMBOs. Models SPM can produce sufficient JuMBOs, but requires unusually wide orbits for the planet-moon system around the star. The observed JuMBOs and free-floating Jupiter-mass objects in the Trapezium cluster are best reproduced if they formed in pairs and as free-floaters together with the other stars in a smooth (Plummer) density profile with a virial radius of 0.5pc. A fractal stellar distribution also works, but requires relatively recent formations (>0.2Myr after the other stars formed) or a high (50%) initial binary fraction. This would make the primordial binary fraction of JuMBOs even higher than the already large observation fraction of 8%. The fraction of JuMBOs will continue to drop with time, and the lack of JuMBOs in Upper Scorpius could then result in its higher age, causing more JuMBOs to be ionized. We then also predict that the interstellar density of Jupiter-mass objects (mostly singles with 2% lucky surviving binaries) is 0.05/pc${3}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. Jupiter Mass Binary Objects in the Trapezium Cluster, arXiv e-prints arXiv:2310.01231 (2023), 10.48550/arXiv.2310.01231, 2310.01231.
  2. Discovery of Young, Isolated Planetary Mass Objects in the σ𝜎\sigmaitalic_σ Orionis Star Cluster, Science 290(5489), 103 (2000), 10.1126/science.290.5489.103.
  3. A population of very young brown dwarfs and free-floating planets in Orion,  MNRAS 314, 858 (2000), 10.1046/j.1365-8711.2000.03515.x, arXiv:astro-ph/0003061.
  4. Discovery of Very Young Free-floating Giant Planets in the σ𝜎\sigmaitalic_σ Orionis Cluster, In Astronomische Gesellschaft Meeting Abstracts, vol. 17 of Astronomische Gesellschaft Meeting Abstracts (2000).
  5. A rich population of free-floating planets in the Upper Scorpius young stellar association, Nature Astronomy 6, 89 (2022), 10.1038/s41550-021-01513-x, 2112.11999.
  6. Unbound or distant planetary mass population detected by gravitational microlensing,  Nat 473, 349 (2011), 10.1038/nature10092, 1105.3544.
  7. N. Miret-Roig, The origin of free-floating planets,  Ap&SS 368(3), 17 (2023), 10.1007/s10509-023-04175-5, 2303.05522.
  8. C. Low and D. Lynden-Bell, The minimum Jeans mass or when fragmentation must stop.,  MNRAS 176, 367 (1976), 10.1093/mnras/176.2.367.
  9. The minimum mass for opacity-limited fragmentation in turbulent cloud cores,  A&A 430, 1059 (2005), 10.1051/0004-6361:20041703, astro-ph/0411495.
  10. A. P. Whitworth and D. Stamatellos, The minimum mass for star formation, and the origin of binary brown dwarfs,  A&A 458(3), 817 (2006), 10.1051/0004-6361:20065806, astro-ph/0610039.
  11. Tilted circumbinary planetary systems as efficient progenitors of free-floating planets, arXiv e-prints arXiv:2310.15603 (2023), 2310.15603.
  12. Survivability of planetary systems in young and dense star clusters,  A&A 624, A120 (2019), 10.1051/0004-6361/201834641, 1902.04652.
  13. Dynamical instabilities and the formation of extrasolar planetary systems, Science 274, 954 (1996), 10.1126/science.274.5289.954.
  14. The dynamical fate of planetary systems in young star clusters,  MNRAS 453, 2759 (2015), 10.1093/mnras/stv1832, 1508.01593.
  15. Free-floating Planets in Stellar Clusters: Not So Surprising,  ApJ 565, 1251 (2002), 10.1086/337921, astro-ph/0108350.
  16. Stability of multiplanetary systems in star clusters,  MNRAS 470, 4337 (2017), 10.1093/mnras/stx1464, 1706.03789.
  17. Planetary systems in a star cluster I: the Solar system scenario,  MNRAS 489(2), 2280 (2019), 10.1093/mnras/stz2346, 1908.07747.
  18. E. B. Ford, M. Havlickova and F. A. Rasio, Dynamical Instabilities in Extrasolar Planetary Systems Containing Two Giant Planets,  Icarus 150(2), 303 (2001), 10.1006/icar.2001.6588, astro-ph/0010178.
  19. The dynamical evolution of multiplanet systems in open clusters,  MNRAS 433, 867 (2013), 10.1093/mnras/stt771, 1305.1413.
  20. On the survival of resonant and non-resonant planetary systems in star clusters,  MNRAS 497(2), 1807 (2020), 10.1093/mnras/staa2047, 2007.11601.
  21. The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and Y Dwarfs,  ApJS 253(1), 7 (2021), 10.3847/1538-4365/abd107, 2011.11616.
  22. The Young L Dwarf 2MASS J11193254-1137466 Is a Planetary-mass Binary,  ApJL 843(1), L4 (2017), 10.3847/2041-8213/aa76df, 1706.01883.
  23. The Coldest Brown Dwarf (or Free-floating Planet)?: The Y Dwarf WISE 1828+2650,  ApJ 764(1), 101 (2013), 10.1088/0004-637X/764/1/101, 1301.1669.
  24. JWST/NIRCam Discovery of the First Y+Y Brown Dwarf Binary: WISE J033605.05-014350.4,  ApJL 947(2), L30 (2023), 10.3847/2041-8213/acc86d, 2303.16923.
  25. A Statistical Survey of Peculiar L and T Dwarfs in SDSS, 2MASS, and WISE,  AJ 154(3), 112 (2017), 10.3847/1538-3881/aa83b0, 1708.03688.
  26. Detection of new strongly variable brown dwarfs in the L/T transition,  A&A 629, A145 (2019), 10.1051/0004-6361/201935671, 1910.02638.
  27. C. Clanton and B. S. Gaudi, Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys,  ApJ 819(2), 125 (2016), 10.3847/0004-637X/819/2/125, 1508.04434.
  28. Y. Wang, R. Perna and Z. Zhu, Floating binary planets from ejections during close stellar encounters, arXiv e-prints arXiv:2310.06016 (2023), 10.48550/arXiv.2310.06016, 2310.06016.
  29. The formation of very wide binaries during the star cluster dissolution phase,  MNRAS 404(4), 1835 (2010), 10.1111/j.1365-2966.2010.16399.x, 1001.3969.
  30. On the Origin of Planets at Very Wide Orbits from the Recapture of Free Floating Planets,  ApJ 750, 83 (2012), 10.1088/0004-637X/750/1/83, 1202.2362.
  31. N. Goulinski and E. N. Ribak, Capture of free-floating planets by planetary systems,  MNRAS 473(2), 1589 (2018), 10.1093/mnras/stx2506, 1705.10332.
  32. H. C. Plummer, On the problem of distribution in globular star clusters,  MNRAS 71, 460 (1911).
  33. The dynamical evolution of fractal star clusters: The survival of substructure,  A&A 413, 929 (2004), 10.1051/0004-6361:20031529, astro-ph/0310333.
  34. D. C. Heggie, Binary evolution in stellar dynamics,  MNRAS 173, 729 (1975).
  35. P. Kroupa, The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems, Science 295, 82 (2002), 10.1126/science.1067524, arXiv:astro-ph/0201098.
  36. Free-floating Planet Mass Function from MOA-II 9 yr Survey toward the Galactic Bulge,  AJ 166(3), 108 (2023), 10.3847/1538-3881/ace688, 2303.08280.
  37. H. von Zeipel, Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques, Astronomische Nachrichten 183(22), 345 (1910), 10.1002/asna.19091832202.
  38. M. Lidov, Planet. Space Sci. 9, 719 (1962).
  39. Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity,  AJ 67, 591 (1962).
  40. Chaos in self-gravitating many-body systems. Lyapunov time dependence of N and the influence of general relativity,  A&A 659, A86 (2022), 10.1051/0004-6361/202141789, 2109.11012.
  41. Multi-physics simulations using a hierarchical interchangeable software interface, Computer Physics Communications 183, 456 (2013), http://dx.doi.org/10.1016/j.cpc.2012.09.024, 1204.5522.
  42. The Astrophysical Multipurpose Software Environment,  A&A 557, A84 (2013), 10.1051/0004-6361/201321252, 1307.3016.
  43. S. Portegies Zwart and S. McMillan, Astrophysical Recipes; The art of AMUSE, 10.1088/978-0-7503-1320-9 (2018).
  44. S. Portegies Zwart and T. Boekholt, On the minimal accuracy required for simulating self-gravitating systems by means of direct n-body methods, The Astrophysical Journal Letters 785(1), L3 (2014).
  45. A. Blaauw, On the origin of the O- and B-type stars with high velocities (the ”run-away” stars), and some related problems,  Bul. Astron. Inst. Neth. 15, 265 (1961).
  46. S. M. Vicente and J. Alves, Size distribution of circumstellar disks in the Trapezium cluster,  A&A 441, 195 (2005), 10.1051/0004-6361:20053540, astro-ph/0506585.
  47. The probability of binary formation by three-body encounters,  A&A 53, 259 (1976).
  48. N. Moeckel and C. J. Clarke, The formation of permanent soft binaries in dispersing clusters,  MNRAS 415(2), 1179 (2011), 10.1111/j.1365-2966.2011.18731.x, 1103.2306.
  49. S. F. Portegies Zwart and S. L. W. McMillan, Gravitational thermodynamics and black-hole mergers, Int, J, of Mod. Phys, A 15, 4871 (2000), 10.1142/S0217751X00002135.
  50. G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, ISBN 1441412697 (2009).
  51. T. E. Oliphant, A guide to NumPy, vol. 1, Trelgol Publishing USA (2006).
  52. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020), 10.1038/s41592-019-0686-2.
  53. J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science and Engineering 9, 90 (2007), 10.1109/MCSE.2007.55.
  54. S. Portegies Zwart, The ecological impact of high-performance computing in astrophysics, Nature Astronomy 4, 819 (2020), 10.1038/s41550-020-1208-y, 2009.11295.
  55. Chip-level and multi-node analysis of energy-optimized lattice boltzmann cfd simulations, Concurrency and Computation: Practice and Experience 28(7), 2295 (2016), 10.1002/cpe.3489, https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3489.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com