Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Sarcasm Detection with OpenAI GPT-based Models (2312.04642v1)

Published 7 Dec 2023 in cs.CL and cs.LG

Abstract: Sarcasm is a form of irony that requires readers or listeners to interpret its intended meaning by considering context and social cues. Machine learning classification models have long had difficulty detecting sarcasm due to its social complexity and contradictory nature. This paper explores the applications of the Generative Pretrained Transformer (GPT) models, including GPT-3, InstructGPT, GPT-3.5, and GPT-4, in detecting sarcasm in natural language. It tests fine-tuned and zero-shot models of different sizes and releases. The GPT models were tested on the political and balanced (pol-bal) portion of the popular Self-Annotated Reddit Corpus (SARC 2.0) sarcasm dataset. In the fine-tuning case, the largest fine-tuned GPT-3 model achieves accuracy and $F_1$-score of 0.81, outperforming prior models. In the zero-shot case, one of GPT-4 models yields an accuracy of 0.70 and $F_1$-score of 0.75. Other models score lower. Additionally, a model's performance may improve or deteriorate with each release, highlighting the need to reassess performance after each release.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Montgomery Gole (2 papers)
  2. Williams-Paul Nwadiugwu (1 paper)
  3. Andriy Miranskyy (36 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.