Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UTNLP at SemEval-2022 Task 6: A Comparative Analysis of Sarcasm Detection Using Generative-based and Mutation-based Data Augmentation (2204.08198v5)

Published 18 Apr 2022 in cs.CL

Abstract: Sarcasm is a term that refers to the use of words to mock, irritate, or amuse someone. It is commonly used on social media. The metaphorical and creative nature of sarcasm presents a significant difficulty for sentiment analysis systems based on affective computing. The methodology and results of our team, UTNLP, in the SemEval-2022 shared task 6 on sarcasm detection are presented in this paper. We put different models, and data augmentation approaches to the test and report on which one works best. The tests begin with traditional machine learning models and progress to transformer-based and attention-based models. We employed data augmentation based on data mutation and data generation. Using RoBERTa and mutation-based data augmentation, our best approach achieved an F1-sarcastic of 0.38 in the competition's evaluation phase. After the competition, we fixed our model's flaws and achieved an F1-sarcastic of 0.414.

Citations (9)

Summary

We haven't generated a summary for this paper yet.