Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finetuning for Sarcasm Detection with a Pruned Dataset (2212.12213v1)

Published 23 Dec 2022 in cs.CL and cs.AI

Abstract: Sarcasm is a form of irony that involves saying or writing something that is opposite or opposite to what one really means, often in a humorous or mocking way. It is often used to mock or mock someone or something, or to be humorous or amusing. Sarcasm is usually conveyed through tone of voice, facial expressions, or other forms of nonverbal communication, but it can also be indicated by the use of certain words or phrases that are typically associated with irony or humor. Sarcasm detection is difficult because it relies on context and non-verbal cues. It can also be culturally specific, subjective and ambiguous. In this work, we fine-tune the RoBERTa based sarcasm detection model presented in Abaskohi et al. [2022] to get to within 0.02 F1 of the state-of-the-art (Hercog et al. [2022]) on the iSarcasm dataset (Oprea and Magdy [2019]). This performance is achieved by augmenting iSarcasm with a pruned version of the Self Annotated Reddit Corpus (SARC) (Khodak et al. [2017]). Our pruned version is 100 times smaller than the subset of SARC used to train the state-of-the-art model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ishita Goyal (1 paper)
  2. Priyank Bhandia (1 paper)
  3. Sanjana Dulam (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.