Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Entanglement generation via single-qubit rotations in a torn Hilbert space (2312.04507v2)

Published 7 Dec 2023 in quant-ph, physics.atom-ph, and physics.optics

Abstract: We propose an efficient yet simple protocol to generate arbitrary symmetric entangled states with only global single-qubit rotations in a torn Hilbert space. The system is based on spin-1/2 qubits in a resonator such as atoms in an optical cavity or superconducting qubits coupled to a main bus. By sending light or microwave into the resonator, it induces AC Stark shifts on particular angular-momentum eigenstates (Dicke states) of qubits. Then we are able to generate barriers that hinder transitions between adjacent Dicke states and tear the original Hilbert space into pieces. Therefore, a simple global single-qubit rotation becomes highly non-trivial, and thus generates entanglement among the many-body system. By optimal control of energy shifts on Dicke states, we are able to generate arbitrary symmetric entangled states. We also exemplify that we can create varieties of useful states with near-unity fidelities in only one or very few steps, including W states, spin-squeezed states (SSS), and Greenberger-Horne-Zeilinger (GHZ) states. Particularly, the SSS can be created by only one step with a squeezing parameter $\xi_R2\sim1/N{0.843}$ approaching the Heisenberg limit (HL). Our finding establishes a way for universal entanglement generations with only single-qubit drivings where all the multiple-qubit controls are integrated into simply switching on/off microwave. It has direct applications in the variational quantum optimizer which is available with existing technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature photonics 5, 222 (2011).
  2. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Physical review letters 96, 010401 (2006).
  3. L. Pezzè and A. Smerzi, Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol, Physical Review Letters 125, 210503 (2020).
  4. P. Horodecki, Ł. Rudnicki, and K. Życzkowski, Five open problems in quantum information theory, PRX Quantum 3, 010101 (2022).
  5. S. Slussarenko and G. J. Pryde, Photonic quantum information processing: A concise review, Applied Physics Reviews 6 (2019).
  6. G. B. Xavier and G. Lima, Quantum information processing with space-division multiplexing optical fibres, Communications Physics 3, 9 (2020).
  7. D. P. DiVincenzo, Quantum computation, Science 270, 255 (1995).
  8. T. Albash and D. A. Lidar, Adiabatic quantum computation, Reviews of Modern Physics 90, 015002 (2018).
  9. S. L. Braunstein and H. J. Kimble, Dense coding for continuous variables, Physical Review A 61, 042302 (2000).
  10. M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nature Reviews Physics 2, 365 (2020).
  11. A. Kuzmich, K. Mølmer, and E. Polzik, Spin squeezing in an ensemble of atoms illuminated with squeezed light, Physical review letters 79, 4782 (1997).
  12. E. S. Polzik and J. Ye, Entanglement and spin squeezing in a network of distant optical lattice clocks, Physical Review A 93, 021404 (2016).
  13. E. Pedrozo-Peñafiel et al., Entanglement on an optical atomic-clock transition, Nature 588, 414 (2020).
  14. A. Omran et al., Generation and manipulation of schrödinger cat states in rydberg atom arrays, Science 365, 570 (2019).
  15. R. H. Dicke, Coherence in spontaneous radiation processes, Physical review 93, 99 (1954).
  16. J. Huo et al., Gatemon qubit based on a thin inas-al hybrid nanowire, Chinese Physics Letters 40, 047302 (2023).
  17. C. Rigetti et al., Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms, Physical Review B 86, 100506 (2012).
  18. M. Kitagawa and M. Ueda, Squeezed spin states, Physical Review A 47, 5138 (1993).
  19. S. Lloyd, Almost any quantum logic gate is universal, Physical review letters 75, 346 (1995).
  20. G. Kimura, The bloch vector for n-level systems, Physics Letters A 314, 339 (2003).
  21. Optimized data and necessary code, https://github.com/ZhangTao1999/Entanglement_generation_via_single_qubit_operation_in_a_teared_Hilbert_space (2023), accessed: December 7, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: