Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Accelerated Real-Life (ARL) Testing and Characterization of Automotive LiDAR Sensors to facilitate the Development and Validation of Enhanced Sensor Models (2312.04229v1)

Published 7 Dec 2023 in eess.SP, cs.SY, and eess.SY

Abstract: In the realm of automated driving simulation and sensor modeling, the need for highly accurate sensor models is paramount for ensuring the reliability and safety of advanced driving assistance systems (ADAS). Hence, numerous works focus on the development of high-fidelity models of ADAS sensors, such as camera, Radar as well as modern LiDAR systems to simulate the sensor behavior in different driving scenarios, even under varying environmental conditions, considering for example adverse weather effects. However, aging effects of sensors, leading to suboptimal system performance, are mostly overlooked by current simulation techniques. This paper introduces a cutting-edge Hardware-in-the-Loop (HiL) test bench designed for the automated, accelerated aging and characterization of Automotive LiDAR sensors. The primary objective of this research is to address the aging effects of LiDAR sensors over the product life cycle, specifically focusing on aspects such as laser beam profile deterioration, output power reduction and intrinsic parameter drift, which are mostly neglected in current sensor models. By that, this proceeding research is intended to path the way, not only towards identifying and modeling respective degradation effects, but also to suggest quantitative model validation metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.