Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Subsets of groups with context-free preimages (2312.04191v3)

Published 7 Dec 2023 in math.GR and cs.FL

Abstract: We study subsets $E$ of finitely generated groups where the set of all words over a given finite generating set that lie in $E$ forms a context-free language. We call these sets recognisably context-free. They are invariant of the choice of generating set and a theorem of Muller and Schupp fully classifies when the set ${1}$ can be recognisably context-free. We extend Muller and Schupp's result to show that a group $G$ admits a finite recognisably context-free subset if and only if $G$ is virtually free. We show that every conjugacy class of a group $G$ is recognisably context-free if and only if $G$ is virtually free. We conclude by showing that a coset is recognisably context-free if and only if the Schreier coset graph of the corresponding subgroup is quasi-isometric to a tree.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.