Occlusion-based Detection of Trojan-triggering Inputs in Large Language Models of Code (2312.04004v2)
Abstract: LLMs are becoming an integrated part of software development. These models are trained on large datasets for code, where it is hard to verify each data point. Therefore, a potential attack surface can be to inject poisonous data into the training data to make models vulnerable, aka trojaned. It can pose a significant threat by hiding manipulative behaviors inside models, leading to compromising the integrity of the models in downstream tasks. In this paper, we propose an occlusion-based human-in-the-loop technique, OSeql, to distinguish trojan-triggering inputs of code. The technique is based on the observation that trojaned neural models of code rely heavily on the triggering part of input; hence, its removal would change the confidence of the models in their prediction substantially. Our results suggest that OSeql can detect the triggering inputs with almost 100% recall. We discuss the problem of false positives and how to address them. These results provide a baseline for future studies in this field.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.