Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automated Multimodal Data Annotation via Calibration With Indoor Positioning System

Published 6 Dec 2023 in cs.CV | (2312.03608v1)

Abstract: Learned object detection methods based on fusion of LiDAR and camera data require labeled training samples, but niche applications, such as warehouse robotics or automated infrastructure, require semantic classes not available in large existing datasets. Therefore, to facilitate the rapid creation of multimodal object detection datasets and alleviate the burden of human labeling, we propose a novel automated annotation pipeline. Our method uses an indoor positioning system (IPS) to produce accurate detection labels for both point clouds and images and eliminates manual annotation entirely. In an experiment, the system annotates objects of interest 261.8 times faster than a human baseline and speeds up end-to-end dataset creation by 61.5%.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.