Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Schroedinger equation as a confluent Heun equation (2312.03569v1)

Published 6 Dec 2023 in nlin.SI and quant-ph

Abstract: This article deals with two classes of quasi-exactly solvable (QES) trigonometric potentials for which the one-dimensional Schroedinger equation reduces to a confluent Heun equation (CHE) where the independent variable takes only finite values. Power series for the CHE are used to get finite- and infinite-series eigenfunctions. Finite series occur only for special sets of parameters and characterize the quasi-exact solvability. Infinite series occur for all admissible values of the parameters (even values involving finite series), and are bounded and convergent in the entire range of the independent variable. Moreover, throughout the article we examine other QES trigonometric and hyperbolic potentials. In all cases, for a finite series there is a convergent infinite series.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube