Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Freezing of sessile droplet and frost halo formation (2312.03271v1)

Published 6 Dec 2023 in physics.flu-dyn and cond-mat.soft

Abstract: The freezing of a sessile droplet unveils fascinating physics, characterised by the emergence of a frost halo on the underlying substrate, the progression of the liquid-ice interface, and the formation of a cusp-like morphology at the tip of the droplet. We investigate the freezing of a volatile sessile droplet, focusing on the frost halo formation, which has not been theoretically explored. The formation of the frost halo is associated with the inherent evaporation process in the early freezing stages. We observe a negative evaporation flux enveloping the droplet in the initial stages, which indicates that vapour produced during freezing condenses on the substrate close to the contact line, forming a frost halo. The condensate accumulation triggers re-evaporation, resulting in a temporal shift of the frost halo region away from the contact line. Eventually, it disappears due to the diffusive nature of the water vapour far away from the droplet. We found that increasing the relative humidity increases the lifetime of the frost halo due to a substantial reduction in evaporation that prolonged the presence of net condensate on the substrate. Increasing liquid volatility increases the evaporation flux, and condensation occurs closer to the droplet, as a higher amount of vapour is in the periphery of the droplet. We also found that decreasing the thermal conductivity of the substrate increases the total freezing time. The slower freezing process is accompanied by increased vaporized liquid, resulting in condensation with its concentration reaching supersaturation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. T. G. Myers and C. P. Thompson, Modeling the flow of water on aircraft in icing conditions, AIAA J. 36, 1010 (1998).
  2. K. Mensah and J. M. Choi, Review of technologies for snow melting systems, J. Mech. Sci. Technol. 29, 5507 (2015).
  3. H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation, Nature 284, 88 (1980).
  4. C. A. Angell, Supercooled water, Annu. Rev. Phys. Chem. 34, 593 (1983).
  5. S. Jung, M. K. Tiwari, and D. Poulikakos, Frost halos from supercooled water droplets, Proc. Natl. Acad. Sci. 109, 16073 (2012a).
  6. H. Hu and Z. Jin, An icing physics study by using lifetime-based molecular tagging thermometry technique, Int. J. Multiph. Flow 36, 672 (2010).
  7. D. M. Anderson, M. G. Worster, and S. H. Davis, The case for a dynamic contact angle in containerless solidification, J. Cryst. Growth. 163, 329 (1996).
  8. A. Sanz, J. Meseguer, and L. Mayo, The influence of gravity on the solidification of a drop, J. Cryst. Growth. 82, 81 (1987).
  9. Z. Jin, H. Zhang, and Z. Yang, The impact and freezing processes of a water droplet on different cold cylindrical surfaces, Int. J. Heat Mass Transf. 113, 318 (2017).
  10. P. Hao, C. Lv, and X. Zhang, Freezing of sessile water droplets on surfaces with various roughness and wettability, Appl. Phys. Lett. 104, 161609 (2014).
  11. G. Chaudhary and R. Li, Freezing of water droplets on solid surfaces: An experimental and numerical study, Exp. Therm. Fluid Sci. 57, 86 (2014).
  12. S. Nath, S. F. Ahmadi, and J. B. Boreyko, A review of condensation frosting, Nanoscale Microscale Thermophys. Eng. 21, 81 (2017).
  13. A. A. Yancheshme, G. Momen, and R. J. Aminabadi, Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review, Adv. Colloid Interface Sci. 279, 102155 (2020).
  14. T. V. Vu, K. V. Dao, and B. D. Pham, Numerical simulation of the freezing process of a water drop attached to a cold plate, J. Mech. Sci. Technol. 32, 2119 (2018).
  15. M. Tembely, R. Attarzadeh, and A. Dolatabadi, On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces, Int. J. Heat Mass Transf. 127, 193 (2018).
  16. V. S. Ajaev and S. H. Davis, The effect of tri-junction conditions in droplet solidification, J. Cryst. Growth 264, 452 (2004).
  17. M. Tembely and A. Dolatabadi, A comprehensive model for predicting droplet freezing features on a cold substrate, J. Fluid Mech. 859, 566 (2019).
  18. L. W. Schwartz and R. R. Eley, Simulation of droplet motion on low-energy and heterogeneous surfaces, J. Colloid Interface Sci. 202, 173 (1998).
  19. S. Moosman and G. M. Homsy, Evaporating menisci of wetting fluids, J. Colloid Interface Sci. 73, 212 (1980).
  20. V. S. Ajaev and G. M. Homsy, Steady vapor bubbles in rectangular microchannels, J. Colloid Interface Sci. 240, 259 (2001).
  21. G. Karapetsas, K. C. Sahu, and O. K. Matar, Evaporation of sessile droplets laden with particles and insoluble surfactants, Langmuir 32, 6871 (2016).
  22. V. Charitatos and S. Kumar, A thin-film model for droplet spreading on soft solid substrates, Soft Matter 16, 8284 (2020).
  23. A. Prosperetti and M. S. Plesset, The stability of an evaporating liquid surface, Phys. Fluids 27, 1590 (1984).
  24. E. Sultan, A. Boudaoud, and M. B. Amar, Evaporation of a thin film: Diffusion of the vapour and Marangoni instabilities, J. Fluid Mech. 543, 183 (2005).
  25. B. Slater and A. Michaelides, Surface premelting of water ice, Nature Reviews Chemistry 3, 172 (2019).
  26. T. Pham and S. Kumar, Imbibition and evaporation of droplets of colloidal suspensions on permeable substrates, Phys. Rev. Fluid 4, 034004 (2019).
  27. L. Espín and S. Kumar, Droplet spreading and absorption on rough, permeable substrates, J. Fluid Mech. 784, 465 (2015).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com