Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Automated Bias Triangle Feature Extraction Framework (2312.03110v1)

Published 5 Dec 2023 in cond-mat.mes-hall, cs.CV, and quant-ph

Abstract: Bias triangles represent features in stability diagrams of Quantum Dot (QD) devices, whose occurrence and property analysis are crucial indicators for spin physics. Nevertheless, challenges associated with quality and availability of data as well as the subtlety of physical phenomena of interest have hindered an automatic and bespoke analysis framework, often still relying (in part) on human labelling and verification. We introduce a feature extraction framework for bias triangles, built from unsupervised, segmentation-based computer vision methods, which facilitates the direct identification and quantification of physical properties of the former. Thereby, the need for human input or large training datasets to inform supervised learning approaches is circumvented, while additionally enabling the automation of pixelwise shape and feature labeling. In particular, we demonstrate that Pauli Spin Blockade (PSB) detection can be conducted effectively, efficiently and without any training data as a direct result of this approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
  2. A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “Fast universal quantum gate above the fault-tolerance threshold in silicon,” Nature 601, 338–342 (2022a).
  3. A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “A shuttling-based two-qubit logic gate for linking distant silicon quantum processors,” Nature Communications 13 (2022b), 10.1038/s41467-022-33453-z.
  4. M. T. Mądzik, S. Asaad, A. Youssry, B. Joecker, K. M. Rudinger, E. Nielsen, K. C. Young, T. J. Proctor, A. D. Baczewski, A. Laucht, V. Schmitt, F. E. Hudson, K. M. Itoh, A. M. Jakob, B. C. Johnson, D. N. Jamieson, A. S. Dzurak, C. Ferrie, R. Blume-Kohout, and A. Morello, “Precision tomography of a three-qubit donor quantum processor in silicon,” Nature 601, 348–353 (2022).
  5. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Mod. Phys. 79, 1217–1265 (2007).
  6. J. Schuff, D. T. Lennon, S. Geyer, D. L. Craig, F. Fedele, F. Vigneau, L. C. Camenzind, A. V. Kuhlmann, G. A. D. Briggs, D. M. Zumbühl, D. Sejdinovic, and N. Ares, “Identifying Pauli spin blockade using deep learning,” Quantum 7, 1077 (2023a).
  7. F. N. M. Froning, M. J. Rančić, B. Hetényi, S. Bosco, M. K. Rehmann, A. Li, E. P. A. M. Bakkers, F. A. Zwanenburg, D. Loss, D. M. Zumbühl, and F. R. Braakman, “Strong spin-orbit interaction and g𝑔gitalic_g-factor renormalization of hole spins in ge/si nanowire quantum dots,” Phys. Rev. Res. 3, 013081 (2021).
  8. U. Ramer, “An iterative procedure for the polygonal approximation of plane curves,” Comput. Graph. Image Process. 1, 244–256 (1972).
  9. “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Cartographica: The International Journal for Geographic Information and Geovisualization 10, 112–122 (1973).
  10. J. O’Rourke, A. Aggarwal, S. R. Maddila, and M. Baldwin, “An optimal algorithm for finding minimal enclosing triangles,” J. Algorithms 7, 258–269 (1986).
  11. V. Klee and M. C. Laskowski, “Finding the smallest triangles containing a given convex polygon,” J. Algorithms 6, 359–375 (1985).
  12. J. P. Zwolak and J. M. Taylor, “Colloquium: Advances in automation of quantum dot devices control,” Rev. Mod. Phys. 95, 011006 (2023).
  13. S. S. Kalantre, J. P. Zwolak, S. Ragole, X. Wu, N. M. Zimmerman, M. D. Stewart, and J. M. Taylor, “Machine learning techniques for state recognition and auto-tuning in quantum dots,” npj Quantum Information 5, 1–10 (2017).
  14. Y. Muto, T. Nakaso, T. Aizawa, M. Shinozaki, T. Kitada, T. Nakajima, M. Delbecq, J. Yoneda, K. Takeda, A. Noiri, A. Ludwig, A. Wieck, S. Tarucha, A. Kanemura, M. Shiga, and T. Otsuka, “Noise robust automatic charge state recognition in quantum dots by machine learning and pre-processing, and visual explanations of the model with grad-cam,”  (2022).
  15. J. Ziegler, F. Luthi, M. Ramsey, F. Borjans, G. Zheng, and J. P. Zwolak, “Automated extraction of capacitive coupling for quantum dot systems,” Physical Review Applied 19 (2023), 10.1103/physrevapplied.19.054077.
  16. N. M. van Esbroeck, D. T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L. C. Camenzind, L. Yu, D. M. Zumbühl, G. A. D. Briggs, D. Sejdinovic, and N. Ares, “Quantum device fine-tuning using unsupervised embedding learning,” New Journal of Physics 22, 095003 (2020).
  17. “Quantum technology toolbox,” https://qtt.readthedocs.io/en/latest/, accessed: 2023-08-08.
  18. J. Schuff, D. T. Lennon, S. Geyer, D. L. Craig, F. Fedele, F. Vigneau, L. C. Camenzind, A. V. Kuhlmann, G. A. D. Briggs, D. Zumbühl, D. Sejdinovic, and N. Ares, “Dataset for ’Identifying Pauli spin blockade using deep learning’,”  (2023b).
  19. G. W. Zack, W. E. Rogers, and S. A. Latt, “Automatic measurement of sister chromatid exchange frequency.” The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 25, 741 – 753 (1977).
  20. J. H. Lee, S. Lee, G. Zhang, J. Lim, W. K. Chung, and I. H. Suh, “Outdoor place recognition in urban environments using straight lines,” in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014) p. 5550–5557.
  21. X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, and L. Vandersypen, “Quantum logic with spin qubits crossing the surface code threshold,” Nature 601, 343–347 (2022).
  22. A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, and J. R. Petta, “Two-qubit silicon quantum processor with operation fidelity exceeding 99%,” Science Advances 8 (2022), 10.1126/sciadv.abn5130.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.