Spectral Deconfounding for High-Dimensional Sparse Additive Models
Abstract: Many high-dimensional data sets suffer from hidden confounding which affects both the predictors and the response of interest. In such situations, standard regression methods or algorithms lead to biased estimates. This paper substantially extends previous work on spectral deconfounding for high-dimensional linear models to the nonlinear setting and with this, establishes a proof of concept that spectral deconfounding is valid for general nonlinear models. Concretely, we propose an algorithm to estimate high-dimensional sparse additive models in the presence of hidden dense confounding: arguably, this is a simple yet practically useful nonlinear scope. We prove consistency and convergence rates for our method and evaluate it on synthetic data and a genetic data set.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.