Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonparametric Bayesian Adjustment of Unmeasured Confounders in Cox Proportional Hazards Models

Published 5 Dec 2023 in stat.ME | (2312.02404v4)

Abstract: In observational studies, unmeasured confounders present a crucial challenge in accurately estimating desired causal effects. To calculate the hazard ratio (HR) in Cox proportional hazard models for time-to-event outcomes, two-stage residual inclusion and limited information maximum likelihood are typically employed. However, these methods are known to entail difficulty in terms of potential bias of HR estimates and parameter identification. This study introduces a novel nonparametric Bayesian method designed to estimate an unbiased HR, addressing concerns that previous research methods have had. Our proposed method consists of two phases: 1) detecting clusters based on the likelihood of the exposure and outcome variables, and 2) estimating the hazard ratio within each cluster. Although it is implicitly assumed that unmeasured confounders affect outcomes through cluster effects, our algorithm is well-suited for such data structures. The proposed Bayesian estimator has good performance compared with some competitors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.