Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Minimal Model for Carnot Efficiency at Maximum Power (2312.02323v3)

Published 4 Dec 2023 in cond-mat.stat-mech

Abstract: Carnot efficiency sets a fundamental upper bound on the heat engine efficiency, attainable in the quasi-static limit, albeit at the cost of completely sacrificing power output. In this Letter, we present a minimal heat engine model that can attain Carnot efficiency while achieving maximum power output. We unveil the potential of intrinsic divergent physical quantities within the working substance, such as degeneracy, as promising thermodynamic resources to break through the universal power-efficiency trade-off imposed by nonequilibrium thermodynamics for conventional heat engines. Our findings provide novel insights into the collective advantage in harnessing energy of many-body interacting systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (John wiley & sons, 1991).
  2. I. Novikov, The efficiency of atomic power stations (a review), Journal of Nuclear Energy (1954) 7, 125 (1958).
  3. F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, American Journal of Physics 43, 22 (1975a).
  4. C. Van den Broeck, Thermodynamic Efficiency at Maximum Power, Physical Review Letters 95, 190602 (2005).
  5. T. Schmiedl and U. Seifert, Efficiency of molecular motors at maximum power, Europhysics Letters 83, 30005 (2008).
  6. Z. C. Tu, Efficiency at maximum power of Feynman’s ratchet as a heat engine, Journal of Physics A: Mathematical and Theoretical 41, 312003 (2008).
  7. L. Chen and Z. Yan, The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle, The Journal of Chemical Physics 90, 3740 (1989).
  8. V. Holubec and A. Ryabov, Maximum efficiency of low-dissipation heat engines at arbitrary power, Journal of Statistical Mechanics: Theory and Experiment 2016, 073204 (2016).
  9. H. Yuan, Y.-H. Ma, and C. P. Sun, Optimizing thermodynamic cycles with two finite-sized reservoirs, Physical Review E 105, L022101 (2022).
  10. B. Andresen, Current trends in finite-time thermodynamics, Angewandte Chemie International Edition 50, 2690 (2011).
  11. Z.-C. Tu, Abstract models for heat engines, Frontiers of Physics 16, 1 (2021).
  12. M. Campisi and R. Fazio, The power of a critical heat engine, Nature Communications 7, 11895 (2016).
  13. M. Polettini and M. Esposito, Carnot efficiency at divergent power output, EPL (Europhysics Letters) 118, 40003 (2017).
  14. J. S. Lee and H. Park, Carnot efficiency is reachable in an irreversible process, Scientific Reports 7, 10725 (2017).
  15. P. Abiuso and M. Perarnau-Llobet, Optimal Cycles for Low-Dissipation Heat Engines, Physical Review Letters 124, 110606 (2020).
  16. U. Seifert, Efficiency of Autonomous Soft Nanomachines at Maximum Power, Physical Review Letters 106, 020601 (2011a).
  17. Z. C. Tu, Recent advance on the efficiency at maximum power of heat engines, Chinese Physics B 21, 020513 (2012).
  18. S. Liang, D. M. Busiello, and P. D. L. Rios, Emergent thermophoretic behavior in chemical reaction systems, New Journal of Physics 24, 123006 (2022).
  19. C. Maes, Local detailed balance, SciPost Physics Lecture Notes , 32 (2021).
  20. L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Introduction (Princeton University Press, 2021).
  21. M. Esposito, Stochastic thermodynamics under coarse graining, Physical Review E 85, 041125 (2012).
  22. U. Seifert, Stochastic thermodynamics of single enzymes and molecular motors, The European Physical Journal E 34, 26 (2011b).
  23. F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, American Journal of Physics 43, 22 (1975b).
  24. R. Kawai, J. M. R. Parrondo, and C. V. den Broeck, Dissipation: The Phase-Space Perspective, Physical Review Letters 98, 080602 (2007).
  25. J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermodynamics of information, Nature Physics 11, 131 (2015).
  26. Y.-H. Ma, S.-H. Su, and C.-P. Sun, Quantum thermodynamic cycle with quantum phase transition, Physical Review E 96, 022143 (2017).
  27. N. Shiraishi, K. Saito, and H. Tasaki, Universal Trade-Off Relation between Power and Efficiency for Heat Engines, Physical Review Letters 117, 190601 (2016).
  28. This finding leaves an open question: Does a tight analytical tradeoff between power and efficiency exist throughout the entire range of η~~𝜂\tilde{\eta}over~ start_ARG italic_η end_ARG? We have attempted to find it but have not been successful so far. The asymptotic expressions in Eq. (13) at both ends of η~~𝜂\tilde{\eta}over~ start_ARG italic_η end_ARG can serve as an a good approximation for the complete tradeoff relation in the large-s𝑠sitalic_s regime.
  29. A. Rolandi, P. Abiuso, and M. Perarnau-Llobet, Collective advantages in finite-time thermodynamics, Physical Review Letters 131, 210401 (2023).
  30. S. H. Lee, J. Um, and H. Park, Nonuniversality of heat-engine efficiency at maximum power, Physical Review E 98, 052137 (2018).
  31. H. Vroylandt, M. Esposito, and G. Verley, Collective effects enhancing power and efficiency, Europhysics Letters 120, 30009 (2018).
  32. T. Herpich, J. Thingna, and M. Esposito, Collective Power: Minimal Model for Thermodynamics of Nonequilibrium Phase Transitions, Physical Review X 8, 031056 (2018).
  33. A. G. Frim and M. R. DeWeese, Geometric bound on the efficiency of irreversible thermodynamic cycles, Physical Review Letters 128, 230601 (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com