Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diffusion-driven flows in a non-linear stratified fluid layer (2311.17386v2)

Published 29 Nov 2023 in physics.flu-dyn, math-ph, math.AP, and math.MP

Abstract: Diffusion-driven flow is a boundary layer flow arising from the interplay of gravity and diffusion in density-stratified fluids when a gravitational field is non-parallel to an impermeable solid boundary. This study investigates diffusion-driven flow within a nonlinearly density-stratified fluid confined between two tilted parallel walls. We introduce an asymptotic expansion inspired by the center manifold theory, where quantities are expanded in terms of derivatives of the cross-sectional averaged stratified scalar (such as salinity or temperature). This technique provides accurate approximations for velocity, density, and pressure fields. Furthermore, we derive an evolution equation describing the cross-sectional averaged stratified scalar. This equation takes the form of the traditional diffusion equation but replaces the constant diffusion coefficient with a positive-definite function dependent on the solution's derivative. Numerical simulations validate the accuracy of our approximations. Our investigation of the effective equation reveals that the density profile depends on a non-dimensional parameter denoted as $\gamma$ representing the flow strength. In the large $\gamma$ limit, the system is approximated by a diffusion process with an augmented diffusion coefficient of $1+\cot{2}\theta$, where $\theta$ signifies the inclination angle of the channel domain. This parameter regime is where diffusion-driven flow exhibits its strongest mixing ability. Conversely, in the small $\gamma$ regime, the density field behaves like pure diffusion with distorted isopycnals. Lastly, we show that the classical thin film equation aligns with the results obtained using the proposed expansion in the small $\gamma$ regime but fails to accurately describe the dynamics of the density field for large $\gamma$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: