Papers
Topics
Authors
Recent
2000 character limit reached

Vortex pair dynamics in three-dimensional homogeneous dipolar superfluids (2311.17192v2)

Published 28 Nov 2023 in cond-mat.quant-gas

Abstract: The static and dynamic properties of vortices in dipolar Bose-Einstein condensates (dBECs) can be considerably modified relative to their nondipolar counterparts by the anisotropic and long-ranged nature of the dipole-dipole interaction. Working in a uniform dBEC, we analyze the structure of single vortices and the dynamics of vortex pairs, investigating the deviations from the nondipolar paradigm. For a straight vortex line, we find that the induced dipolar interaction potential is axially anisotropic when the dipole moments have a nonzero projection orthogonal to the vortex line. This results in a corresponding elongation of the vortex core along this projection as well as an anisotropic superfluid phase and enhanced compressibility in the vicinity of the vortex core. Consequently, the trajectories of like-signed vortex pairs are described by a family of elliptical and oval-like curves rather than the familiar circular orbits. Similarly for opposite-signed vortex pairs their translation speeds along the binormal are found to be dipole interaction-dependent. We expect that these findings will shed light on the underlying mechanisms of many-vortex phenomena in dBECs such as quantum turbulence, vortex reconnections, and vortex lattices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. A. L. Fetter, Rotating Trapped Bose-Einstein Condensates, Reviews of Modern Physics 81, 647 (2009).
  2. K. W. Schwarz, Three-Dimensional Vortex Dynamics in Superfluid 4He: Line-Line and Line-Boundary Interactions, Physical Review B 31, 5782 (1985).
  3. K. W. Schwarz, Three-Dimensional Vortex Dynamics in Superfluid 4He: Homogeneous Superfluid Turbulence, Physical Review B 38, 2398 (1988).
  4. C.-C. Lin, On the Motion of Vortices in Two Dimensions-I. Existence of the Kirchhoff-Routh Function, Proceedings of the National Academy of Sciences 27, 570 (1941a).
  5. C.-C. Lin, On the Motion of Vortices in Two Dimensions-II Some Further Investigations on the Kirchhoff-Routh Function, Proceedings of the National Academy of Sciences 27, 575 (1941b).
  6. L. Onsager, Statistical Hydrodynamics, Il Nuovo Cimento 6, 279 (1949).
  7. T.-L. Ho, Bose-Einstein Condensates with Large Number of Vortices, Physical Review Letters 87, 060403 (2001).
  8. N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Quantum Phases of Vortices in Rotating Bose-Einstein Condensates, Physical Review Letters 87, 120405 (2001).
  9. G. Baym, Tkachenko Modes of Vortex Lattices in Rapidly Rotating Bose-Einstein Condensates, Physical Review Letters 91, 110402 (2003).
  10. G. Watanabe, G. Baym, and C. J. Pethick, Landau Levels and the Thomas-Fermi Structure of Rapidly Rotating Bose-Einstein Condensates, Physical Review Letters 93, 190401 (2004).
  11. W. F. Vinen and J. J. Niemela, Quantum Turbulence, Journal of Low Temperature Physics 128, 167 (2002).
  12. C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Exact Solution of the Thomas-Fermi Equation for a Trapped Bose-Einstein Condensate with Dipole-Dipole Interactions, Physical Review A 71, 033618 (2005).
  13. C. Ticknor, R. M. Wilson, and J. L. Bohn, Anisotropic Superfluidity in a Dipolar Bose Gas, Physical Review Letters 106, 065301 (2011).
  14. N. R. Cooper, E. H. Rezayi, and S. H. Simon, Vortex Lattices in Rotating Atomic Bose Gases with Dipolar Interactions, Physical Review Letters 95, 200402 (2005).
  15. S. Komineas and N. R. Cooper, Vortex Lattices in Bose-Einstein Condensates with Dipolar Interactions Beyond the Weak-Interaction Limit, Physical Review A 75, 023623 (2007).
  16. J. Zhang and H. Zhai, Vortex Lattices in Planar Bose-Einstein Condensates with Dipolar Interactions, Physical Review Letters 95, 200403 (2005).
  17. S. Gautam, Dynamics of the Corotating Vortices in Dipolar Bose–Einstein Condensates in the Presence of Dissipation, Journal of Physics B: Atomic, Molecular and Optical Physics 47, 165301 (2014).
  18. L. Jia, A.-B. Wang, and S. Yi, Low-Lying Excitations of Vortex Lattices in Condensates with Anisotropic Dipole-Dipole Interaction, Physical Review. A 97, 043614 (2018).
  19. Q. Zhao, Effects of Dipole–Dipole Interaction on Vortex Motion in Bose–Einstein Condensates, Journal of Low Temperature Physics 204, 1 (2021).
  20. N. Navon, R. P. Smith, and Z. Hadzibabic, Quantum Gases in Optical Boxes, Nature Physics 14, 1334 (2021).
  21. A. R. P. Lima and A. Pelster, Beyond Mean-Field Low-Lying Excitations of Dipolar Gases, Physical Review A 86, 063609 (2012).
  22. C. F. Barenghi and N. G. Parker, A Primer on Quantum Fluids, Springer Briefs in Physics (Springer, 2016).
  23. W. Bao and Y. Cai, Mathematical Theory and Numerical Methods for Bose-Einstein Condensation, Kinetic and Related Models 6, 1 (2013).
  24. R. M. Kerr, Vortex Stretching as a Mechanism for Quantum Kinetic Energy Decay, Physical Review Letters 106, 224501 (2011).
  25. C. Rorai, K. R. Sreenivasan, and M. E. Fisher, Propagating and Annihilating Vortex Dipoles in the Gross-Pitaevskii Equation, Physical Review B 88, 134522 (2013).
  26. We use only 2 gridpoints along z𝑧zitalic_z as uniformity is assumed along this dimension.
  27. A.-C. Lee, D. Baillie, and P. B. Blakie, Numerical Calculation of Dipolar-Quantum-Droplet Stationary States, Physical Review Research 3, 013283 (2021).
  28. S. Yi and L. You, Trapped Atomic Condensates with Anisotropic Interactions, Physical Review A 61, 041604(R) (2000).
  29. S. Yi and H. Pu, Vortex Structures in Dipolar Condensates, Physical Review A 73, 061602(R) (2006).
  30. C. J. Foster, P. B. Blakie, and M. J. Davis, Vortex Pairing in Two-Dimensional Bose Gases, Physical Review A 81, 023623 (2010).
  31. A. C. White, C. F. Barenghi, and N. P. Proukakis, Creation and Characterization of Vortex Clusters in Atomic Bose-Einstein Condensates, Physical Review A 86, 013635 (2012).
  32. L. J. O’Riordan, Non-Equilibrium Vortex Dynamics in Rapidly Rotating Bose–Einstein Condensates, Ph.D. thesis, Okinawa Institute of Science and Technology (2017).
  33. P. Moon and D. E. Spencer, Field Theory Handbook, 2nd ed. (Springer-Verlag, 1971).
  34. S. Sabari and R. K. Kumar, Effect of an Oscillating Gaussian Obstacle in a Dipolar Bose-Einstein Condensate, European Physical Journal D 72, 48 (2018).
  35. S. Tsuchiya, F. Dalfovo, and L. Pitaevskii, Solitons in Two-Dimensional Bose-Einstein Condensates, Physical Review A 77, 045601 (2008).
  36. I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic Solitons in Dipolar Bose-Einstein Condensates, Physical Review Letters 100, 090406 (2008).
  37. A. Villois and D. Proment, private communication.
  38. M. Klawunn and L. Santos, Phase Transition from Straight into Twisted Vortex Lines in Dipolar Bose–Einstein Condensates, New Journal of Physics 11, 055612 (2009).
  39. R. M. Wilson, S. Ronen, and J. L. Bohn, Stability and Excitations of a Dipolar Bose-Einstein Condensate with a Vortex, Physical Review A 79, 013621 (2009).
  40. V. I. Smirnov, Part 2: Complex Variables – Special Functions, 1st ed., A Course of Higher Mathematics, Vol. III (Pergamon Press, 1964).
  41. J. B. Weiss and J. C. McWilliams, Nonergodicity of Point Vortices, Physics of Fluids A: Fluid Dynamics 3, 835 (1991).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com