Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Pseudomagnetic fields in fully relaxed twisted bilayer and trilayer graphene (2311.15052v1)

Published 25 Nov 2023 in cond-mat.mes-hall

Abstract: We present simple models to describe the in-plane and the out-of-plane lattice relaxation in twisted bilayer and symmetrically twisted trilayer graphene. Analytical results and series expansions show that for twist angles {\theta} > 1 ${\circ}$, the in-plane atomic displacements lead to pseudomagnetic fields weakly dependent on {\theta}. In symmetrically twisted trilayer graphene, the central layer in-plane relaxation is greatly enhanced. The joint effect of the relaxation-induced pseudoscalar potentials and the associated energy difference between interlayer dimer and non-dimer pairs resulted in a significant electron-hole asymmetry both in twisted bilayer and trilayer graphene.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. F. Guinea and N. R. Walet, Proceedings of the National Academy of Sciences  (2018), 10.1073/pnas.1810947115.
  2. D. Mao and T. Senthil, Phys. Rev. B 103, 115110 (2021).
  3. N. N. T. Nam and M. Koshino, Phys. Rev. B 96, 075311 (2017).
  4. F. Guinea and N. R. Walet, Phys. Rev. B 99, 205134 (2019).
  5. M. Koshino and N. N. T. Nam, Phys. Rev. B 101, 195425 (2020).
  6. F. Gargiulo and O. V. Yazyev, 2D Materials 5, 015019 (2017).
  7. H. Ochoa, Phys. Rev. B 100, 155426 (2019).
  8. B. Xie and J. Liu, arXiv preprint arXiv:2305.16640  (2023a).
  9. A. Lopez-Bezanilla and J. L. Lado, Phys. Rev. Res. 2, 033357 (2020).
  10. F. K. Popov and G. Tarnopolsky, arXiv preprint arXiv:2303.15505  (2023).
  11. Y. N. Gornostyrev and M. I. Katsnelson, Phys. Rev. B 102, 085428 (2020).
  12. D. K. Efimkin and A. H. MacDonald, Phys. Rev. B 98, 035404 (2018).
  13. N. R. Walet and F. Guinea, 2D Materials 7, 015023 (2019).
  14. R. Bistritzer and A. H. MacDonald, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  15. J. Kang and O. Vafek, Phys. Rev. B 107, 075408 (2023).
  16. O. Vafek and J. Kang, Phys. Rev. B 107, 075123 (2023).
  17. S. Fang and E. Kaxiras, Phys. Rev. B 93, 235153 (2016).
  18. A. N. Kolmogorov and V. H. Crespi, Phys. Rev. B 71, 235415 (2005).
  19. H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
  20. T. Low and F. Guinea, Nano letters 10, 3551 (2010).
  21. J. Jung and A. H. MacDonald, Phys. Rev. B 89, 035405 (2014).
  22. D. Bennett, D. T. Larson, L. Sharma, S. Carr,  and E. Kaxiras, “Twisted bilayer graphene revisited: minimal two-band model for low-energy bands,”  (2023), arXiv:2310.12308 [cond-mat.mes-hall] .
  23. B. Xie and J. Liu, arXiv preprint arXiv:2305.16640  (2023b).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.