Papers
Topics
Authors
Recent
Search
2000 character limit reached

Central extensions of higher groups: Green-Schwarz mechanism and 2-connections

Published 24 Nov 2023 in hep-th, math-ph, math.AT, and math.MP | (2311.14666v2)

Abstract: We study the smooth $2$-group structure arising in the presence of quantum field theory with one-form symmetry. We acquire $2$-group structures obtained by a central extension of the zero-form symmetry by the one-form symmetry. We determine that the existence of a $2$-group structure is guaranteed by Chern--Simons levels. We further verify how we will be able to provide a fix to the current $2$-group problems by using the bibundle model. We outline the principal $2$-connection theory with respect to such $2$-group and compare it with the ansatz obtained from the Green--Schwarz mechanism. We further propose the existence of smooth $\infty$-group symmetries in quantum field theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. C. Baez and A. S. Crans, “Higher-dimensional algebra VI: Lie 2-algebras,” arXiv preprint math/0307263 (2003) .
  2. J. C. Baez, A. S. Crans, U. Schreiber, and D. Stevenson, “From loop groups to 2-groups,” Homology, Homotopy and Applications 9 no. 2, (2007) 101–135.
  3. J. C. Baez and A. D. Lauda, “Higher-dimensional algebra V: 2-groups,” Theory and Applications of Categories 12 no. 14, (2004) 423–491.
  4. J.-L. Brylinski, “Differentiable cohomology of gauge groups,” arXiv preprint math/0011069 (2000) .
  5. C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-group global symmetries,” Journal of High Energy Physics 2019 no. 2, (2019) 1–110.
  6. G. A. Demessie and C. Sämann, “Higher gauge theory with string 2-groups,” Advances in Theoretical and Mathematical Physics 21 no. 8, (2017) 1895–1952.
  7. N. Ganter et al., “Categorical tori,” SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 14 (2018) 014.
  8. A. Henriques, “Integrating L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-algebras,” Compositio Mathematica 144 no. 4, (2008) 1017–1045.
  9. T. P. Killingback, “World-sheet anomalies and loop geometry,” Nuclear Physics B 288 (1987) 578–588.
  10. T. Nikolaus, U. Schreiber, and D. Stevenson, “Principal ∞\infty∞-bundles: general theory,” Journal of Homotopy and Related Structures 10 no. 4, (2015) 749–801.
  11. T. Nikolaus, U. Schreiber, and D. Stevenson, “Principal ∞\infty∞-bundles: presentations,” Journal of Homotopy and Related Structures 10 no. 3, (2015) 565–622.
  12. C. J. Schommer-Pries, “Central extensions of smooth 2–groups and a finite-dimensional string 2–group,” Geometry & Topology 15 no. 2, (2011) 609–676.
  13. G. Segal, “Cohomology of topological groups,” in Symposia Mathematica, vol. 4, pp. 377–387, Academic Press London. 1970.
  14. P. Severa, “L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-algebras as 1-jets of simplicial manifolds (and a bit beyond),” arXiv preprint math/0612349 (2006) .
  15. E. Sharpe, “Notes on generalized global symmetries in QFT,” Fortschritte der Physik 63 no. 11-12, (2015) 659–682.
  16. H. X. Sinh, “Gr-catégories,” Université Paris VII doctoral thesis (1975) .
  17. S. Stolz, “A conjecture concerning positive Ricci curvature and the Witten genus,” Mathematische Annalen 304 (1996) 785–800.
  18. S. Stolz and P. Teichner, “What is an elliptic object?” in Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal, no. 308, p. 247, Cambridge University Press. 2004.
  19. Y. Tachikawa, “On gauging finite subgroups,” SciPost Physics 8 no. 1, (2020) 015.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.