Papers
Topics
Authors
Recent
2000 character limit reached

Ground states of one-dimensional dipolar lattice bosons at unit filling

Published 24 Nov 2023 in cond-mat.quant-gas, cond-mat.mes-hall, and quant-ph | (2311.14606v2)

Abstract: Recent experiments on ultracold dipoles in optical lattices open exciting possibilities for the quantum simulation of extended Hubbard models. When considered in one dimension, these models present at unit filling a particularly interesting ground-state physics, including a symmetry-protected topological phase known as Haldane insulator. We show that the tail of the dipolar interaction beyond nearest-neighbors, which may be tailored by means of the transversal confinement, does not only modify quantitatively the Haldane insulator regime and lead to density waves of larger periods, but results as well in unexpected insulating phases. These insulating phases may be topological or topologically trivial, and are characterized by peculiar correlations of the site occupations. These phases may be realized and observed in state-of-the-art experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  2. J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357, 1002 (2017).
  3. A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nature Physics 16, 132 (2020).
  4. E. G. Dalla Torre, E. Berg, and E. Altman, Hidden order in 1d Bose insulators, Phys. Rev. Lett. 97, 260401 (2006).
  5. D. Rossini and R. Fazio, Phase diagram of the extended Bose-Hubbard model, New Journal of Physics 14, 065012 (2012).
  6. S. Ejima, F. Lange, and H. Fehske, Spectral and entanglement properties of the bosonic Haldane insulator, Phys. Rev. Lett. 113, 020401 (2014).
  7. M. den Nijs and K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains, Phys. Rev. B 40, 4709 (1989).
  8. T. Kennedy and H. Tasaki, Hidden Z2subscriptZ2{\mathrm{Z}}_{2}roman_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT×Z2subscriptZ2{\mathrm{Z}}_{2}roman_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry breaking in Haldane-gap antiferromagnets, Phys. Rev. B 45, 304 (1992).
  9. K. Biedroń, M. Ła̧cki, and J. Zakrzewski, Extended Bose-Hubbard model with dipolar and contact interactions, Phys. Rev. B 97, 245102 (2018).
  10. M. L. Wall and L. D. Carr, Dipole–dipole interactions in optical lattices do not follow an inverse cube power law, New Journal of Physics 15, 123005 (2013).
  11. C. Gross and W. S. Bakr, Quantum gas microscopy for single atom and spin detection, Nature Physics 17, 1316 (2021).
  12. I. P. McCulloch, Infinite size density matrix renormalization group, revisited (2008), arXiv:0804.2509 [cond-mat.str-el] .
  13. M. Ła̧cki, D. Delande, and J. Zakrzewski, Dynamics of cold bosons in optical lattices: effects of higher bloch bands, New Journal of Physics 15, 013062 (2013).
  14. W. Chen, K. Hida, and B. C. Sanctuary, Ground-state phase diagram of s=1𝑠1s=1italic_s = 1 XXZXXZ\mathrm{XXZ}roman_XXZ chains with uniaxial single-ion-type anisotropy, Phys. Rev. B 67, 104401 (2003).
  15. Additional precaution is necessary due to the oscillatory character of the string-like correlations in the ℓℓ\ellroman_ℓDW phases. Hence, before taking the limit j→∞→𝑗j\rightarrow\inftyitalic_j → ∞ we first average over few j𝑗jitalic_j sites respecting the phase periodicity. In this way the oscillations in R⁢(q)𝑅𝑞R(q)italic_R ( italic_q ) in ℓℓ\ellroman_ℓDW phases cancel out to zero.
  16. P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78, 032329 (2008).
  17. V. S. Dotsenko, Four spins correlation function of the q states Potts model, for general values of q. Its percolation model limit q→→\rightarrow→1, Nuclear Physics B 953, 114973 (2020).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.