Towards a Peer-to-Peer Data Distribution Layer for Efficient and Collaborative Resource Optimization of Distributed Dataflow Applications (2311.14600v2)
Abstract: Performance modeling can help to improve the resource efficiency of clusters and distributed dataflow applications, yet the available modeling data is often limited. Collaborative approaches to performance modeling, characterized by the sharing of performance data or models, have been shown to improve resource efficiency, but there has been little focus on actual data sharing strategies and implementation in production environments. This missing building block holds back the realization of proposed collaborative solutions. In this paper, we envision, design, and evaluate a peer-to-peer performance data sharing approach for collaborative performance modeling of distributed dataflow applications. Our proposed data distribution layer enables access to performance data in a decentralized manner, thereby facilitating collaborative modeling approaches and allowing for improved prediction capabilities and hence increased resource efficiency. In our evaluation, we assess our approach with regard to deployment, data replication, and data validation, through experiments with a prototype implementation and simulation, demonstrating feasibility and allowing discussion of potential limitations and next steps.
- M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working sets,” in HotCloud. USENIX, 2010.
- P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache flink™: Stream and batch processing in a single engine,” IEEE Data Eng. Bull., vol. 38, no. 4, 2015.
- K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek, P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot: workload autoscaling at google,” in EuroSys. ACM, 2020.
- Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud computing: State of the art and research challenges,” IEEE Trans. Serv. Comput., vol. 11, no. 2, 2018.
- K. Rajan, D. Kakadia, C. Curino, and S. Krishnan, “Perforator: eloquent performance models for resource optimization,” in SoCC. ACM, 2016.
- D. F. Kirchoff, M. G. Xavier, J. Mastella, and C. A. F. D. Rose, “A preliminary study of machine learning workload prediction techniques for cloud applications,” in PDP. IEEE, 2019.
- H. Al-Sayeh and K. Sattler, “Gray box modeling methodology for runtime prediction of apache spark jobs,” in ICDE. IEEE, 2019.
- Y. Chen, L. Lin, B. Li, Q. Wang, and Q. Zhang, “Silhouette: Efficient cloud configuration exploration for large-scale analytics,” IEEE Trans. Parallel Distributed Syst., vol. 32, no. 8, 2021.
- M. Bilal, M. Canini, and R. Rodrigues, “Finding the right cloud configuration for analytics clusters,” in SoCC. ACM, 2020.
- P. Mendes, M. Casimiro, P. Romano, and D. Garlan, “Trimtuner: Efficient optimization of machine learning jobs in the cloud via sub-sampling,” in MASCOTS. IEEE, 2020.
- M. Casimiro, D. Didona, P. Romano, L. E. T. Rodrigues, W. Zwaenepoel, and D. Garlan, “Lynceus: Cost-efficient tuning and provisioning of data analytic jobs,” in ICDCS. IEEE, 2020.
- D. Scheinert, L. Thamsen, H. Zhu, J. Will, A. Acker, T. Wittkopp, and O. Kao, “Bellamy: Reusing performance models for distributed dataflow jobs across contexts,” in CLUSTER. IEEE, 2021.
- J. Bader, J. Witzke, S. Becker, A. Lößer, F. Lehmann, L. Doehler, A. D. Vu, and O. Kao, “Towards advanced monitoring for scientific workflows,” in BigData. IEEE, 2022.
- S. Becker, D. Scheinert, F. Schmidt, and O. Kao, “Efficient runtime profiling for black-box machine learning services on sensor streams,” in ICFEC. IEEE, 2022.
- A. Fekry, L. Carata, T. F. J. Pasquier, and A. Rice, “Accelerating the configuration tuning of big data analytics with similarity-aware multitask bayesian optimization,” in BigData. IEEE, 2020.
- A. Fekry, L. Carata, T. F. J. Pasquier, A. Rice, and A. Hopper, “To tune or not to tune?: In search of optimal configurations for data analytics,” in SIGKDD. ACM, 2020.
- D. Scheinert, A. Alamgiralem, J. Bader, J. Will, T. Wittkopp, and L. Thamsen, “On the potential of execution traces for batch processing workload optimization in public clouds,” in BigData. IEEE, 2021.
- J. Will, L. Thamsen, D. Scheinert, J. Bader, and O. Kao, “C3O: collaborative cluster configuration optimization for distributed data processing in public clouds,” in IC2E, 2021.
- S. Becker, F. Schmidt, and O. Kao, “Edgepier: P2p-based container image distribution in edge computing environments,” in IPCCC. IEEE, 2021.
- E. Daniel and F. Tschorsch, “IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks,” IEEE Commun. Surv. Tutorials, vol. 24, no. 1, 2022.
- A. R. Naik and B. N. Keshavamurthy, “Next level peer-to-peer overlay networks under high churns: a survey,” Peer-to-Peer Netw. Appl., vol. 13, no. 3, 2020.
- J. Benet, “IPFS - content addressed, versioned, P2P file system,” CoRR, vol. abs/1407.3561, 2014.
- P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Information System Based on the XOR Metric,” in Peer-to-Peer Systems, ser. Lecture Notes in Computer Science. Springer, 2002.
- S. Kumar, A. K. Bharti, and R. Amin, “Decentralized secure storage of medical records using blockchain and IPFS: A comparative analysis with future directions,” Secur. Priv., vol. 4, no. 5, 2021.
- Y. Chen, H. Li, K. Li, and J. Zhang, “An improved P2P file system scheme based on IPFS and blockchain,” in BigData. IEEE, 2017.
- L. Budach, M. Feuerpfeil, N. Ihde, A. Nathansen, N. S. Noack, H. Patzlaff, H. Harmouch, and F. Naumann, “The effects of data quality on ml-model performance,” CoRR, vol. abs/2207.14529, 2022.
- J. Will, O. Arslan, J. Bader, D. Scheinert, and L. Thamsen, “Training data reduction for performance models of data analytics jobs in the cloud,” in BigData. IEEE, 2021.
- Y. Psaras and D. Dias, “The interplanetary file system and the filecoin network,” in DSN. IEEE, 2020.
- X. Zhang, H. Wu, Z. Chang, S. Jin, J. Tan, F. Li, T. Zhang, and B. Cui, “Restune: Resource oriented tuning boosted by meta-learning for cloud databases,” in SIGMOD1. ACM, 2021.
- D. Scheinert, P. Wiesner, T. Wittkopp, L. Thamsen, J. Will, and O. Kao, “Karasu: A collaborative approach to efficient cluster configuration for big data analytics,” in IPCCC. IEEE, 2023.
- M. I. Khalid, I. Ehsan, A. K. I. Al-Ani, J. Iqbal, S. Hussain, S. S. Ullah, and Nayab, “A comprehensive survey on blockchain-based decentralized storage networks,” IEEE Access, vol. 11, 2023.
- N. Z. Benisi, M. Aminian, and B. Javadi, “Blockchain-based decentralized storage networks: A survey,” J. Netw. Comput. Appl., vol. 162, 2020.
- J. Shen, Y. Li, Y. Zhou, and X. Wang, “Understanding I/O performance of IPFS storage: a client’s perspective,” in IWQoS. ACM, 2019.
- O. Ascigil, S. Reñé, M. Król, G. Pavlou, L. Zhang, T. Hasegawa, Y. Koizumi, and K. Kita, “Towards peer-to-peer content retrieval markets: Enhancing IPFS with ICN,” in ICN. ACM, 2019.
- S. A. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping the interplanetary filesystem,” in IFIP Networking Conference. IEEE, 2020.
- O. A. Lajam and T. A. Helmy, “Performance evaluation of IPFS in private networks,” in DSDE. ACM, 2021.
- M. Muzammal, Q. Qu, and B. Nasrulin, “Renovating blockchain with distributed databases: An open source system,” Future Gener. Comput. Syst., vol. 90, 2019.
- L. Aniello, R. Baldoni, E. Gaetani, F. Lombardi, A. Margheri, and V. Sassone, “A prototype evaluation of a tamper-resistant high performance blockchain-based transaction log for a distributed database,” in EDCC. IEEE, 2017.
- Z. Huang, X. Su, Y. Zhang, C. Shi, H. Zhang, and L. Xie, “A decentralized solution for iot data trusted exchange based-on blockchain,” in ICCC, 2017.
- R. Akkaoui, X. Hei, and W. Cheng, “Edgemedichain: A hybrid edge blockchain-based framework for health data exchange,” IEEE Access, vol. 8, 2020.
- Z. Sun, D. Han, D. Li, X. Wang, C. Chang, and Z. Wu, “A blockchain-based secure storage scheme for medical information,” EURASIP J. Wirel. Commun. Netw., vol. 2022, no. 1, 2022.
- R. Kumar, N. Marchang, and R. Tripathi, “Distributed off-chain storage of patient diagnostic reports in healthcare system using IPFS and blockchain,” in COMSNETS. IEEE, 2020.
- J. Hao, Y. Sun, and H. Luo, “A safe and efficient storage scheme based on blockchain and ipfs for agricultural products tracking,” J. Comput, vol. 29, no. 6, 2018.
- H. Ye and S. Park, “Reliable vehicle data storage using blockchain and ipfs,” Electronics, vol. 10, no. 10, 2021.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.