Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Calibration: A Unified Conversion Framework of Spiking Neural Networks (2311.14265v2)

Published 24 Nov 2023 in cs.CV

Abstract: Spiking Neural Networks (SNNs) have emerged as a promising energy-efficient alternative to traditional Artificial Neural Networks (ANNs). Despite this, bridging the performance gap with ANNs in practical scenarios remains a significant challenge. This paper focuses on addressing the dual objectives of enhancing the performance and efficiency of SNNs through the established SNN Calibration conversion framework. Inspired by the biological nervous system, we propose a novel Adaptive-Firing Neuron Model (AdaFire) that dynamically adjusts firing patterns across different layers, substantially reducing conversion errors within limited timesteps. Moreover, to meet our efficiency objectives, we propose two novel strategies: an Sensitivity Spike Compression (SSC) technique and an Input-aware Adaptive Timesteps (IAT) technique. These techniques synergistically reduce both energy consumption and latency during the conversion process, thereby enhancing the overall efficiency of SNNs. Extensive experiments demonstrate our approach outperforms state-of-the-art SNNs methods, showcasing superior performance and efficiency in 2D, 3D, and event-driven classification, as well as object detection and segmentation tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.