Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Statistical ensembles in integrable Hamiltonian systems with almost periodic transitions (2311.14248v1)

Published 24 Nov 2023 in math.DS

Abstract: We study the long-term average evolution of the random ensemble along integrable Hamiltonian systems with time $T$-periodic transitions. More precisely, for any observable $G$, it is demonstrated that the ensemble under $G$ in long time average converges to that over one time period $T$, and that the probability measure induced by the probability density function describing the ensemble at time $t$ weakly converges to the average of the probability measures over time $T$. And we extend the result to almost periodic cases. The key to the proof is based on the {\it {Riemann-Lebesgue lemma in time-average form}} generalized in the paper. %This work contributes to the comprehension of the statistical mechanics of Hamiltonian systems subject to disturbances.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.