CompenHR: Efficient Full Compensation for High-resolution Projector (2311.13409v2)
Abstract: Full projector compensation is a practical task of projector-camera systems. It aims to find a projector input image, named compensation image, such that when projected it cancels the geometric and photometric distortions due to the physical environment and hardware. State-of-the-art methods use deep learning to address this problem and show promising performance for low-resolution setups. However, directly applying deep learning to high-resolution setups is impractical due to the long training time and high memory cost. To address this issue, this paper proposes a practical full compensation solution. Firstly, we design an attention-based grid refinement network to improve geometric correction quality. Secondly, we integrate a novel sampling scheme into an end-to-end compensation network to alleviate computation and introduce attention blocks to preserve key features. Finally, we construct a benchmark dataset for high-resolution projector full compensation. In experiments, our method demonstrates clear advantages in both efficiency and quality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.