Papers
Topics
Authors
Recent
2000 character limit reached

Soft random simplicial complexes (2311.13034v6)

Published 21 Nov 2023 in math.AT and math.CO

Abstract: A soft random graph $G(n,r,p)$ can be obtained from the random geometric graph $G(n,r)$ by keeping every edge in $G(n,r)$ with probability $p$. This random graph is a particular case of the soft random graph model introduced by Penrose, in which the probability between 2 vertices is a function that depends on the distance between them. In this article, we define models for random simplicial complexes built over the soft random graph $G(n,r,p)$, which also present randomness in all other dimensions. Furthermore, we study the homology of those random simplicial complexes in different regimes of $n,r$, and $p$ by giving asymptotic formulas for the expectation of the Betti numbers in the sparser regimes, and bounds in the denser regimes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.