Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hashing it Out: Predicting Unhealthy Conversations on Twitter

Published 17 Nov 2023 in cs.CL and cs.AI | (2311.10596v1)

Abstract: Personal attacks in the context of social media conversations often lead to fast-paced derailment, leading to even more harmful exchanges being made. State-of-the-art systems for the detection of such conversational derailment often make use of deep learning approaches for prediction purposes. In this paper, we show that an Attention-based BERT architecture, pre-trained on a large Twitter corpus and fine-tuned on our task, is efficient and effective in making such predictions. This model shows clear advantages in performance to the existing LSTM model we use as a baseline. Additionally, we show that this impressive performance can be attained through fine-tuning on a relatively small, novel dataset, particularly after mitigating overfitting issues through synthetic oversampling techniques. By introducing the first transformer based model for forecasting conversational events on Twitter, this work lays the foundation for a practical tool to encourage better interactions on one of the most ubiquitous social media platforms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.