Papers
Topics
Authors
Recent
2000 character limit reached

On the self-overlap in vector spin glasses

Published 16 Nov 2023 in math.PR and cond-mat.dis-nn | (2311.09880v2)

Abstract: We consider vector spin glass models with self-overlap correction. Since the limit of free energy is an infimum, we use arguments analogous to those for generic models to show the following: 1) the averaged self-overlap converges; 2) the self-overlap concentrates; 3) the infimum optimizes over paths whose right endpoints are the limit of self-overlap. Lastly, using these, we directly verify the equivalence between the variational formula obtained in [arXiv:2303.16284] and Panchenko's generalized Parisi formula in [Ann. Probab., 46(2):865-896].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. E. Bates and Y. Sohn. Free energy in multi-species mixed p-spin spherical models. Electronic Journal of Probability, 27:1–75, 2022.
  2. E. Bates and Y. Sohn. Parisi formula for balanced Potts spin glass. arXiv preprint arXiv:2310.06745, 2023.
  3. S. Chatterjee. The Ghirlanda-Guerra identities without averaging. arXiv preprint arXiv:0911.4520, 2009.
  4. H.-B. Chen. Self-overlap correction simplifies the Parisi formula for vector spins. arXiv preprint arXiv:2303.16284, 2023.
  5. On the free energy of vector spin glasses with non-convex interactions. arXiv preprint arXiv:2311.08980, 2023.
  6. H.-B. Chen and J. Xia. Hamilton–Jacobi equations from mean-field spin glasses. arXiv preprint arXiv:2201.12732, 2022.
  7. H.-B. Chen and J. Xia. Hamilton–Jacobi equations with monotone nonlinearities on convex cones. arXiv preprint arXiv:2206.12537, 2022.
  8. W.-K. Chen. The Aizenman-Sims-Starr scheme and Parisi formula for mixed p-spin spherical models. Electronic Journal of Probability, 18:1–14, 2013.
  9. T. Dominguez and J.-C. Mourrat. Statistical mechanics of mean-field disordered systems: a Hamilton-Jacobi approach. Preprint, arXiv:2311.08976, 2023.
  10. S. Ghirlanda and F. Guerra. General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. Journal of Physics A: Mathematical and General, 31(46):9149, 1998.
  11. F. Guerra. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys., 233(1):1–12, 2003.
  12. Matrix analysis. Cambridge university press, 2012.
  13. Hopf formula and multitime Hamilton–Jacobi equations. Proceedings of the American Mathematical Society, 96(1):79–84, 1986.
  14. J.-C. Mourrat. Parisi’s formula is a Hamilton–Jacobi equation in Wasserstein space. Canadian Journal of Mathematics, to appear.
  15. J.-C. Mourrat. Nonconvex interactions in mean-field spin glasses. Probability and Mathematical Physics, to appear.
  16. J.-C. Mourrat. Free energy upper bound for mean-field vector spin glasses. arXiv preprint arXiv:2010.09114, 2020.
  17. J.-C. Mourrat and D. Panchenko. Extending the Parisi formula along a Hamilton-Jacobi equation. Electronic Journal of Probability, 25:Paper No. 23, 17, 2020.
  18. D. Panchenko. Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math. Phys., 17(7):793–857, 2005.
  19. D. Panchenko. The Ghirlanda–Guerra identities for mixed p-spin model. Comptes Rendus Mathematique, 348(3-4):189–192, 2010.
  20. D. Panchenko. The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York, 2013.
  21. D. Panchenko. The Parisi formula for mixed p𝑝pitalic_p-spin models. The Annals of Probability, 42(3):946–958, 2014.
  22. D. Panchenko. The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Probab., 43(6):3494–3513, 2015.
  23. D. Panchenko. Free energy in the Potts spin glass. Ann. Probab., 46(2):829–864, 2018.
  24. D. Panchenko. Free energy in the mixed p𝑝pitalic_p-spin models with vector spins. Ann. Probab., 46(2):865–896, 2018.
  25. G. Parisi. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett., 43(23):1754, 1979.
  26. G. Parisi. A sequence of approximated solutions to the SK model for spin glasses. J. Phys. A, 13(4):L115–L121, 1980.
  27. R. T. Powers and E. Størmer. Free states of the canonical anticommutation relations. Communications in Mathematical Physics, 16(1):1–33, 1970.
  28. R. T. Rockafellar. Convex Analysis, volume 36. Princeton university press, 1970.
  29. M. Talagrand. Free energy of the spherical mean field model. Probab. Theory Related Fields, 134(3):339–382, 2006.
  30. M. Talagrand. The Parisi formula. Ann. of Math. (2), 163(1):221–263, 2006.
  31. M. Talagrand. Construction of pure states in mean field models for spin glasses. Probability Theory & Related Fields, 148, 2010.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.