Analysis of sum-of-squares relaxations for the quantum rotor model (2311.09010v2)
Abstract: The noncommutative sum-of-squares (ncSoS) hierarchy was introduced by Navascu\'{e}s-Pironio-Ac\'{i}n as a sequence of semidefinite programming relaxations for approximating values of noncommutative polynomial optimization problems, which were originally intended to generalize quantum values of nonlocal games. Recent work has started to analyze the hierarchy for approximating ground energies of local Hamiltonians, initially through rounding algorithms which output product states for degree-2 ncSoS applied to Quantum Max-Cut. Some rounding methods are known which output entangled states, but they use degree-4 ncSoS. Based on this, Hwang-Neeman-Parekh-Thompson-Wright conjectured that degree-2 ncSoS cannot beat product state approximations for Quantum Max-Cut and gave a partial proof relying on a conjectural generalization of Borrell's inequality. In this work we consider a family of Hamiltonians (called the quantum rotor model in condensed matter literature or lattice $O(k)$ vector model in quantum field theory) with infinite-dimensional local Hilbert space $L{2}(S{k - 1})$, and show that a degree-2 ncSoS relaxation approximates the ground state energy better than any product state.
- B.P. Abolins, R.E. Zillich and K.B. Whaley “A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom” In Journal of Low Temperature Physics 165.5, 2011, pp. 249–260 DOI: 10.1007/s10909-011-0398-1
- J.F. Adams “Vector Fields on Spheres” In Annals of Mathematics 75.3 Annals of Mathematics, 1962, pp. 603–632 DOI: 10.2307/1970213
- Fabien Alet and Erik S. Sørensen “Cluster Monte Carlo algorithm for the quantum rotor model” In Physical Review E 67.1 American Physical Society, 2003, pp. 015701 DOI: 10.1103/PhysRevE.67.015701
- Anurag Anshu, David Gosset and Karen Morenz “Beyond Product State Approximations for a Quantum Analogue of Max Cut” In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020) 158, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020, pp. 7:1–7:15 DOI: 10.4230/LIPIcs.TQC.2020.7
- Fernando G.S.L. Brandão and Aram W. Harrow “Product-State Approximations to Quantum States” In Communications in Mathematical Physics 342.1, 2016, pp. 47–80 DOI: 10.1007/s00220-016-2575-1
- Jop Briët, Fernando Mário Oliveira Filho and Frank Vallentin “Grothendieck Inequalities for Semidefinite Programs with Rank Constraint” In Theory of Computing 10.4 Theory of Computing, 2014, pp. 77–105 DOI: 10.4086/toc.2014.v010a004
- Andrew M. Childs, David Gosset and Zak Webb “The Bose-Hubbard Model is QMA-complete” In Automata, Languages, and Programming, Lecture Notes in Computer Science Berlin, Heidelberg: Springer, 2014, pp. 308–319 DOI: 10.1007/978-3-662-43948-7˙26
- “Negative probability and uncertainty relations” In Modern Physics Letters A 16.37 World Scientific Publishing Co., 2001, pp. 2381–2385 DOI: 10.1142/S021773230100576X
- Hung-the Diep “Theory Of Magnetism: Application To Surface Physics” World Scientific Publishing Company, 2013
- Etienne Du Trémolet de Lacheisserie, D. Gignoux and M Schlenker “Magnetism” Norwell, Mass: Kluwer Academic Publishers, 2002
- Wolfgang Erb “Uncertainty principles on Riemannian manifolds”, 2010 URL: https://mediatum.ub.tum.de/976465
- “Variational ansatz for the superfluid Mott-insulator transition in optical lattices” In Optics Express 12.1 Optica Publishing Group, 2004, pp. 42–54 DOI: 10.1364/OPEX.12.000042
- Karin Gatermann and Pablo A. Parrilo “Symmetry groups, semidefinite programs, and sums of squares” In Journal of Pure and Applied Algebra 192.1, 2004, pp. 95–128 DOI: 10.1016/j.jpaa.2003.12.011
- “Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut” In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019) 145, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, pp. 31:1–31:17 DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.31
- Michel X. Goemans and David P. Williamson “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming” In Journal of the ACM 42.6, 1995, pp. 1115–1145 DOI: 10.1145/227683.227684
- Tim N.T. Goodman and Say Song Goh “Uncertainty principles and optimality on circles and spheres” In Advances in constructive approximation: Vanderbilt 2003, Mod. Methods Math. Nashboro Press, Brentwood, TN, 2004, pp. 207–218 URL: https://mathscinet.ams.org/mathscinet-getitem?mr=2089927
- F.D.M. Haldane “O(3)𝑂3O(3)italic_O ( 3 ) Nonlinear σ𝜎\sigmaitalic_σ Model and the Topological Distinction between Integer- and Half-Integer-Spin Antiferromagnets in Two Dimensions” In Physical Review Letters 61.8 American Physical Society, 1988, pp. 1029–1032 DOI: 10.1103/PhysRevLett.61.1029
- F.D.M. Haldane “Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3)𝑂3O(3)italic_O ( 3 ) nonlinear sigma model” In Physics Letters A 93.9, 1983, pp. 464–468 DOI: 10.1016/0375-9601(83)90631-X
- F.D.M. Haldane “Ground State Properties of Antiferromagnetic Chains with Unrestricted Spin: Integer Spin Chains as Realisations of the O(3) Non-Linear Sigma Model” arXiv, 2016 DOI: 10.48550/arXiv.1612.00076
- F.D.M. Haldane “Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State” In Physical Review Letters 50.15 American Physical Society, 1983, pp. 1153–1156 DOI: 10.1103/PhysRevLett.50.1153
- M.B. Hastings “Field Theory and The Sum-of-Squares for Quantum Systems” arXiv:2302.14006 [quant-ph] arXiv, 2023 DOI: 10.48550/arXiv.2302.14006
- Balázs Hetényi and Bruce J. Berne “Ground state of the quantum anisotropic planar rotor model: A finite size scaling study of the orientational order-disorder phase transition” In The Journal of Chemical Physics 114.8 American Institute of Physics, 2001, pp. 3674–3682 DOI: 10.1063/1.1337858
- “Unique Games hardness of Quantum Max-Cut, and a conjectured vector-valued Borell’s inequality” In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings Society for IndustrialApplied Mathematics, 2023, pp. 1319–1384 DOI: 10.1137/1.9781611977554.ch48
- S. Iblisdir, R. Orús and J.I. Latorre “Matrix product states algorithms and continuous systems” In Physical Review B 75.10 American Physical Society, 2007, pp. 104305 DOI: 10.1103/PhysRevB.75.104305
- “Ground states of linear rotor chains via the density matrix renormalization group” In The Journal of Chemical Physics 148.13 American Institute of Physics, 2018, pp. 134115 DOI: 10.1063/1.5024403
- “𝖬𝖨𝖯*=𝖱𝖤superscript𝖬𝖨𝖯𝖱𝖤\mathsf{MIP}^{*}=\mathsf{RE}sansserif_MIP start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = sansserif_RE” In arXiv:2001.04383 [quant-ph], 2020
- Robbie King “An Improved Approximation Algorithm for Quantum Max-Cut” arXiv:2209.02589 [quant-ph] arXiv, 2022 DOI: 10.48550/arXiv.2209.02589
- Rolando La Placa “The tensor-entanglement renormalization group of the 2D quantum rotor model”, 2014 URL: https://web.mit.edu/8.334/www/grades/projects/projects14/RolandoLaPlaca.pdf
- Eunou Lee “Optimizing Quantum Circuit Parameters via SDP” In 33rd International Symposium on Algorithms and Computation (ISAAC 2022) 248, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 48:1–48:16 DOI: 10.4230/LIPIcs.ISAAC.2022.48
- Daniel C. Mattis “The Theory of Magnetism I: Statics and Dynamics” 17, Springer Series in Solid-State Sciences Berlin, Heidelberg: Springer, 1981 DOI: 10.1007/978-3-642-83238-3
- Ashley Milsted “Matrix product states and the non-Abelian rotor model” In Physical Review D 93.8 American Physical Society, 2016, pp. 085012 DOI: 10.1103/PhysRevD.93.085012
- “Uncertainty Relation and Minimum Wave Packet on Circle” arXiv:2203.06826 [hep-th, physics:quant-ph], 2022 DOI: 10.48550/arXiv.2203.06826
- Ojas Parekh “Synergies Between Operations Research and Quantum Information Science” arXiv:2301.05554 [quant-ph] In INFORMS Journal on Computing 35.2, 2023, pp. 266–273 DOI: 10.1287/ijoc.2023.1268
- “An Optimal Product-State Approximation for 2-Local Quantum Hamiltonians with Positive Terms” arXiv:2206.08342 [quant-ph] arXiv, 2022 DOI: 10.48550/arXiv.2206.08342
- “Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms” In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021) 198, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 102:1–102:20 DOI: 10.4230/LIPIcs.ICALP.2021.102
- “Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables” In SIAM Journal on Optimization 20.5 Society for IndustrialApplied Mathematics, 2010, pp. 2157–2180 DOI: 10.1137/090760155
- “An Uncertainty Principle for Ultraspherical Expansions” In Journal of Mathematical Analysis and Applications 209.2, 1997, pp. 624–634 DOI: 10.1006/jmaa.1997.5386
- Subir Sachdev “Quantum Phase Transitions” Cambridge: Cambridge University Press, 2000 DOI: 10.1017/CBO9780511622540
- “The θ=π𝜃𝜋\theta=\piitalic_θ = italic_π nonlinear sigma model is massless” In Nuclear Physics B 336.3, 1990, pp. 457–474 DOI: 10.1016/0550-3213(90)90437-I
- “Continuous-variable neural network quantum states and the quantum rotor model” In Quantum Machine Intelligence 5.1, 2023, pp. 12 DOI: 10.1007/s42484-023-00100-9
- Edmund Clifton Stoner “Collective electron ferromagnetism” In Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 165.922 Royal Society, 1938, pp. 372–414 DOI: 10.1098/rspa.1938.0066
- “Tensor network simulation of the (1+1111+11 + 1)-dimensional O(3)𝑂3O(3)italic_O ( 3 ) nonlinear σ𝜎\sigmaitalic_σ-model with θ=π𝜃𝜋\theta=\piitalic_θ = italic_π term” In Physical Review D 104.11 American Physical Society, 2021, pp. 114513 DOI: 10.1103/PhysRevD.104.114513
- “Quantum phase transitions of the diluted O(3)𝑂3O(3)italic_O ( 3 ) rotor model” In Physical Review B 74.9 American Physical Society, 2006, pp. 094415 DOI: 10.1103/PhysRevB.74.094415
- J. Ye, S. Sachdev and N. Read “Solvable spin glass of quantum rotors” In Physical Review Letters 70.25 American Physical Society, 1993, pp. 4011–4014 DOI: 10.1103/PhysRevLett.70.4011