Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity Classification of Product State Problems for Local Hamiltonians (2401.06725v1)

Published 12 Jan 2024 in quant-ph and cs.CC

Abstract: Product states, unentangled tensor products of single qubits, are a ubiquitous ansatz in quantum computation, including for state-of-the-art Hamiltonian approximation algorithms. A natural question is whether we should expect to efficiently solve product state problems on any interesting families of Hamiltonians. We completely classify the complexity of finding minimum-energy product states for Hamiltonians defined by any fixed set of allowed 2-qubit interactions. Our results follow a line of work classifying the complexity of solving Hamiltonian problems and classical constraint satisfaction problems based on the allowed constraints. We prove that estimating the minimum energy of a product state is in P if and only if all allowed interactions are 1-local, and NP-complete otherwise. Equivalently, any family of non-trivial two-body interactions generates Hamiltonians with NP-complete product-state problems. Our hardness constructions only require coupling strengths of constant magnitude. A crucial component of our proofs is a collection of hardness results for a new variant of the Vector Max-Cut problem, which should be of independent interest. Our definition involves sums of distances rather than squared distances and allows linear stretches. A corollary of our classification is a new proof that optimizing product states in the Quantum Max-Cut model (the quantum Heisenberg model) is NP-complete.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Computational complexity: a modern approach. Cambridge University Press, 2009.
  2. Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete & Computational Geometry, 13:189–202, 1995. doi:10.1007/BF02574037.
  3. A generalized Grothendieck inequality and nonlocal correlations that require high entanglement. Communications in mathematical physics, 305(3):827–843, 2011. doi:10.1007/s00220-011-1280-3.
  4. Geometry II. Universitext. Springer Berlin Heidelberg, 2009.
  5. The positive semidefinite Grothendieck problem with rank constraint. In International Colloquium on Automata, Languages, and Programming, pages 31–42. Springer, 2010. doi:10.1007/978-3-642-14165-2_4.
  6. QMA-hardness of consistency of local density matrices with applications to quantum zero-knowledge. SIAM Journal on Computing, 51(4):1400–1450, 2022. doi:10.1137/21M140729X.
  7. Approximation algorithms for quantum many-body problems. Journal of Mathematical Physics, 60(3):032203, 2019. doi:10.1063/1.5085428.
  8. Product-state approximations to quantum states. Commun. Math. Phys., 342:47–80, 2016. doi:10.1007/s00220-016-2575-1.
  9. On complexity of the quantum Ising model. Communications in Mathematical Physics, 349(1):1–45, 2017. doi:10.1007/s00220-016-2787-4.
  10. Approximating the little Grothendieck problem over the orthogonal and unitary groups. Mathematical programming, 160:433–475, 2016. doi:10.1007/s10107-016-0993-7.
  11. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical programming, 95(2):329–357, 2003. doi:10.1007/s10107-002-0352-8.
  12. Tight hardness of the non-commutative Grothendieck problem. Theory of Computing, 13(15):1–24, 2017. doi:10.4086/toc.2017.v013a015.
  13. Complexity classifications of Boolean constraint satisfaction problems. SIAM, 2001.
  14. Complexity classification of local Hamiltonian problems. SIAM Journal on Computing, 45(2):268–316, 2016. doi:10.1137/140998287.
  15. Universal quantum Hamiltonians. Proceedings of the National Academy of Sciences, 115(38):9497–9502, aug 2018. doi:10.1073/pnas.1804949115.
  16. Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System Sciences, 51(3):511–522, 1995. doi:10.1006/jcss.1995.1087.
  17. Quantum Hamiltonian complexity. Foundations and Trends in Theoretical Computer Science, 10(3):159–282, 2015. doi:10.1561/0400000066.
  18. Approximation algorithms for QMA-complete problems. SIAM Journal on Computing, 41(4):1028–1050, 2012. doi:10.1137/110842272.
  19. Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut. In Approximation, Randomization, and Combinatorial Optimization (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.31.
  20. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995. doi:10.1145/227683.227684.
  21. Ryszard Horodecki et al. Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A, 54(3):1838–1843, 1996. doi:10.1103/PhysRevA.54.1838.
  22. An approximation algorithm for the max-2-local Hamiltonian problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.59.
  23. Unique games hardness of Quantum Max-Cut, and a conjectured vector-valued Borell’s inequality. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1319–1384. SIAM, 2023. doi:10.1137/1.9781611977554.ch48.
  24. The approximability of three-valued Max CSP. SIAM Journal on Computing, 35(6):1329–1349, 2006. doi:10.1137/S009753970444644X.
  25. Peter Jonsson. Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights. Theoretical Computer Science, 244(1-2):189–203, 2000. doi:10.1016/S0304-3975(98)00343-0.
  26. Classical and quantum computation. Number 47 in Graduate Studies in Mathematics. American Mathematical Soc., 2002.
  27. A complete classification of the approximability of maximization problems derived from boolean constraint satisfaction. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages 11–20, 1997. doi:10.1145/258533.258538.
  28. Yi-Kai Liu. Consistency of local density matrices is QMA-complete. In Josep Díaz, Klaus Jansen, José D. P. Rolim, and Uri Zwick, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 438–449, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/11830924_40.
  29. L. Lovász. Semidefinite Programs and Combinatorial Optimization, pages 137–194. Springer New York, New York, NY, 2003. doi:10.1007/0-387-22444-0_6.
  30. László Lovász. Graphs and geometry, volume 65. American Mathematical Soc., 2019.
  31. Hiroshi Maehara. On the total edge-length of a tetrahedron. The American Mathematical Monthly, 108(10):967–969, 2001. URL: http://www.jstor.org/stable/2695418.
  32. The complexity of antiferromagnetic interactions and 2D lattices. Quantum Info. Comput., 17(7-8):636–672, 2017. doi:10.5555/3179553.3179559.
  33. Universal qudit Hamiltonians, 2018. arXiv:1802.07130.
  34. Beating random assignment for approximating quantum 2-local Hamiltonian problems. In 29th Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leibniz International Proceedings in Informatics (LIPIcs), pages 74:1–74:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.74.
  35. An optimal product-state approximation for 2-local quantum Hamiltonians with positive terms, 2022. arXiv:2206.08342v1.
  36. Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual ACM symposium on Theory of computing, pages 216–226, 1978. doi:10.1145/800133.804350.
  37. Serge Tabachnikov. Geometry and billiards, volume 30. American Mathematical Soc., 2005.
  38. G. Thompson. Normal forms for skew-symmetric matrices and Hamiltonian systems with first integrals linear in momenta. Proc. of the Amer. Math. Soc., 104(3):910–916, 1988. doi:10.2307/2046815.
  39. The complexity of finite-valued CSPs. Journal of the ACM, 63(4):1–33, 2016. doi:10.1145/2974019.
  40. John Watrous. The theory of quantum information. Cambridge university press, 2018.
  41. The 2-local Hamiltonian problem encompasses NP. International Journal of Quantum Information, 1(03):349–357, 2003. doi:10.1142/S021974990300022X.
  42. John Wright. Personal communication, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com