Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unique Games hardness of Quantum Max-Cut, and a conjectured vector-valued Borell's inequality (2111.01254v3)

Published 1 Nov 2021 in quant-ph and cs.CC

Abstract: The Gaussian noise stability of a function $f:\mathbb{R}n \to {-1, 1}$ is the expected value of $f(\boldsymbol{x}) \cdot f(\boldsymbol{y})$ over $\rho$-correlated Gaussian random variables $\boldsymbol{x}$ and $\boldsymbol{y}$. Borell's inequality states that for $-1 \leq \rho \leq 0$, this is minimized by the halfspace $f(x) = \mathrm{sign}(x_1)$. In this work, we generalize this result to hold for functions $f:\mathbb{R}n \to S{k-1}$ which output $k$-dimensional unit vectors. Our main conjecture, which we call the $\textit{vector-valued Borell's inequality}$, asserts that the expected value of $\langle f(\boldsymbol{x}), f(\boldsymbol{y})\rangle$ is minimized by the function $f(x) = x_{\leq k} / \Vert x_{\leq k} \Vert$, where $x_{\leq k} = (x_1, \ldots, x_k)$. We give several pieces of evidence in favor of this conjecture, including a proof that it does indeed hold in the special case of $n = k$. As an application of this conjecture, we show that it implies several hardness of approximation results for a special case of the local Hamiltonian problem related to the anti-ferromagnetic Heisenberg model known as Quantum Max-Cut. This can be viewed as a natural quantum analogue of the classical Max-Cut problem and has been proposed as a useful testbed for developing algorithms. We show the following, assuming our conjecture: (1) The integrality gap of the basic SDP is $0.498$, matching an existing rounding algorithm. Combined with existing results, this shows that the basic SDP does not achieve the optimal approximation ratio. (2) It is Unique Games-hard (UG-hard) to compute a $(0.956+\varepsilon)$-approximation to the value of the best product state, matching an existing approximation algorithm. (3) It is UG-hard to compute a $(0.956+\varepsilon)$-approximation to the value of the best (possibly entangled) state.

Citations (12)

Summary

We haven't generated a summary for this paper yet.