Intertwinings for Continuum Particle Systems: an Algebraic Approach (2311.08763v2)
Abstract: We develop the algebraic approach to duality, more precisely to intertwinings, within the context of particle systems in general spaces, focusing on the $\mathfrak{su}(1,1)$ current algebra. We introduce raising, lowering, and neutral operators indexed by test functions and we use them to construct unitary operators, which act as self-intertwiners for some Markov processes having the Pascal process's law as a reversible measure. We show that such unitaries relate to generalized Meixner polynomials. Our primary results are continuum counterparts of results in the discrete setting obtained by Carinci, Franceschini, Giardin`a, Groenevelt, and Redig (2019).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.