Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Probabilistic Representations of Ordered Exponentials: Vector-Valued Schrödinger Semigroups and the Combinatorics of Anderson Localization (2311.08564v2)

Published 14 Nov 2023 in math.PR, math-ph, and math.MP

Abstract: We provide two applications of an elementary (yet seemingly unknown) probabilistic representation of matrix ordered exponentials, which generalizes the Feynman-Kac formula in finite dimensions and the change of measure formula between two continuous-time Markov processes on a finite state space. Our first and main application consists of a new Feynman-Kac formula for a class of vector-valued Schr\"odinger operators on the line, which is driven by two sources of randomness: The usual Brownian motion, and a continuous-time Markov process on a finite state space. An important feature of these formulas -- which is at the core of our motivation -- is that they enable the calculation of the joint moments of the semigroup kernels when the matrix potential function contains a continuous Gaussian noise. In particular, our moment formulas shed new light on what the joint moments of the Feynman-Kac kernels of the multivariate stochastic Airy operators of Bloemendal and Vir\'ag (Ann. Probab., 44(4):2726--2769, 2016.) should be; we state a precise conjecture to that effect, which we pursue in a forthcoming paper. Our second application consists of Feynman-Kac formulas for the expected square modulus $\mathbf E\big[|\Psi(t,x)|2\big]$ of the solutions of the Schr\"odinger equation $\partial_t\Psi=-\mathsf i\mathcal H(t)\Psi$ with a time-dependent Hamiltonian $\mathcal H(t)$. Using this, we show that when we take $\mathcal H(t)=-\Delta+q(t,x)$ restricted to a finite box within $\mathbb Zd$, where $q(t,x)$ is a possibly time-dependent Gaussian process, $\mathbf E\big[|\Psi(t,x)|2\big]$ can be written as a relatively simple expectation that involves self- and mutual-intersections of random walks. In particular, this formula hints at a unified combinatorial mechanism that explains the occurrence of localization for both time-dependent and time-independent noises.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: