Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conservation law and Hamilton-Jacobi equations on a junction: the convex case (2311.07177v1)

Published 13 Nov 2023 in math.AP

Abstract: The goal of this paper is to study the link between the solution to an Hamilton-Jacobi (HJ) equation and the solution to a Scalar Conservation Law (SCL) on a special network. When the equations are posed on the real axis, it is well known that the space derivative of the solution to the Hamilton-Jacobi equation is the solution to the corresponding scalar conservation law. On networks, the situation is more complicated and we show that this result still holds true in the convex case on a 1:1 junction. The correspondence between solutions to HJ equations and SCL on a 1:1 junction is done showing the convergence of associated numerical schemes. A second direct proof using semi-algebraic functions is also given. Here a 1:1 junction is a simple network composed of two edges and one vertex. In the case of three edges or more, we show that the associated HJ germ is not a L 1-dissipative germ, while it is the case for only two edges. As an important byproduct of our numerical approach, we get a new result on the convergence of numerical schemes for scalar conservation laws on a junction. For a general desired flux condition which is discretized, we show that the numerical solution with the general flux condition converges to the solution of a SCL problem with an effective flux condition at the junction. Up to our knowledge, in previous works the effective condition was directly implemented in the numerical scheme. In general the effective flux condition differs from the desired one, and is its relaxation, which is very natural from the point of view of Hamilton-Jacobi equations. Here for SCL, this effective flux condition is encoded in a germ that we characterize at the junction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.