Effective Field Theory of Black Hole Perturbations in Vector-Tensor Gravity (2311.06767v2)
Abstract: We formulate the effective field theory (EFT) of vector-tensor gravity for perturbations around an arbitrary background with a ${\it timelike}$ vector profile, which can be applied to study black hole perturbations. The vector profile spontaneously breaks both the time diffeomorphism and the $U(1)$ symmetry, leaving their combination and the spatial diffeomorphism as the residual symmetries in the unitary gauge. We derive two sets of consistency relations which guarantee the residual symmetries of the EFT. Also, we provide the dictionary between our EFT coefficients and those of generalized Proca (GP) theories, which enables us to identify a simple subclass of the EFT that includes the GP theories as a special case. For this subclass, we consider the stealth Schwarzschild(-de Sitter) background solution with a constant temporal component of the vector field and study the decoupling limit of the longitudinal mode of the vector field, explicitly showing that the strong coupling problem arises due to vanishing sound speeds. This is in sharp contrast to the case of gauged ghost condensate, in which perturbations are weakly coupled thanks to certain higher-derivative terms, i.e., the scordatura terms. This implies that, in order to consistently describe this type of stealth solutions within the EFT, the scordatura terms must necessarily be taken into account in addition to those already included in the simple subclass.
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et. al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119 (2017), no. 16 161101, 1710.05832.
- LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL Collaboration, B. P. Abbott et. al., “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A,” Astrophys. J. Lett. 848 (2017), no. 2 L13, 1710.05834.
- Supernova Search Team Collaboration, A. G. Riess et. al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116 (1998) 1009–1038, astro-ph/9805201.
- Supernova Cosmology Project Collaboration, S. Perlmutter et. al., “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J. 517 (1999) 565–586, astro-ph/9812133.
- P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Rev. Mod. Phys. 75 (2003) 559–606, astro-ph/0207347.
- E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D 15 (2006) 1753–1936, hep-th/0603057.
- S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61 (1989) 1–23.
- T. Padmanabhan, “Cosmological constant: The Weight of the vacuum,” Phys. Rept. 380 (2003) 235–320, hep-th/0212290.
- S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, “Is cosmic speed - up due to new gravitational physics?,” Phys. Rev. D 70 (2004) 043528, astro-ph/0306438.
- N. Afshordi, D. J. H. Chung, and G. Geshnizjani, “Cuscuton: A Causal Field Theory with an Infinite Speed of Sound,” Phys. Rev. D 75 (2007) 083513, hep-th/0609150.
- C. Lin and S. Mukohyama, “A Class of Minimally Modified Gravity Theories,” JCAP 10 (2017) 033, 1708.03757.
- K. Aoki, C. Lin, and S. Mukohyama, “Novel matter coupling in general relativity via canonical transformation,” Phys. Rev. D 98 (2018), no. 4 044022, 1804.03902.
- A. Iyonaga, K. Takahashi, and T. Kobayashi, “Extended Cuscuton: Formulation,” JCAP 12 (2018), no. 12 002, 1809.10935.
- S. Mukohyama and K. Noui, “Minimally Modified Gravity: a Hamiltonian Construction,” JCAP 07 (2019) 049, 1905.02000.
- X. Gao and Z.-B. Yao, “Spatially covariant gravity theories with two tensorial degrees of freedom: the formalism,” Phys. Rev. D 101 (2020), no. 6 064018, 1910.13995.
- A. De Felice, A. Doll, and S. Mukohyama, “A theory of type-II minimally modified gravity,” JCAP 09 (2020) 034, 2004.12549.
- A. De Felice, K.-i. Maeda, S. Mukohyama, and M. C. Pookkillath, “Comparison of two theories of Type-IIa minimally modified gravity,” Phys. Rev. D 106 (2022), no. 2 024028, 2204.08294.
- G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10 (1974) 363–384.
- J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Healthy theories beyond Horndeski,” Phys. Rev. Lett. 114 (2015), no. 21 211101, 1404.6495.
- D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability,” JCAP 02 (2016) 034, 1510.06930.
- M. Crisostomi, K. Koyama, and G. Tasinato, “Extended Scalar-Tensor Theories of Gravity,” JCAP 1604 (2016), no. 04 044, 1602.03119.
- J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, “Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order,” JHEP 12 (2016) 100, 1608.08135.
- K. Takahashi and T. Kobayashi, “Extended mimetic gravity: Hamiltonian analysis and gradient instabilities,” JCAP 11 (2017), no. 11 038, 1708.02951.
- D. Langlois, M. Mancarella, K. Noui, and F. Vernizzi, “Mimetic gravity as DHOST theories,” JCAP 02 (2019) 036, 1802.03394.
- D. Langlois, “Dark energy and modified gravity in degenerate higher-order scalar–tensor (DHOST) theories: A review,” Int. J. Mod. Phys. D 28 (2019), no. 05 1942006, 1811.06271.
- T. Kobayashi, “Horndeski theory and beyond: a review,” Rept. Prog. Phys. 82 (2019), no. 8 086901, 1901.07183.
- A. De Felice, D. Langlois, S. Mukohyama, K. Noui, and A. Wang, “Generalized instantaneous modes in higher-order scalar-tensor theories,” Phys. Rev. D 98 (2018), no. 8 084024, 1803.06241.
- A. De Felice, S. Mukohyama, and K. Takahashi, “Nonlinear definition of the shadowy mode in higher-order scalar-tensor theories,” JCAP 12 (2021), no. 12 020, 2110.03194.
- K. Takahashi, H. Motohashi, and M. Minamitsuji, “Invertible disformal transformations with higher derivatives,” Phys. Rev. D 105 (2022), no. 2 024015, 2111.11634.
- K. Takahashi, M. Minamitsuji, and H. Motohashi, “Generalized disformal Horndeski theories: cosmological perturbations and consistent matter coupling,” PTEP 2023 (2023) 013E01, 2209.02176.
- K. Takahashi, M. Minamitsuji, and H. Motohashi, “Effective description of generalized disformal theories,” JCAP 07 (2023) 009, 2304.08624.
- K. Takahashi, “Invertible disformal transformations with arbitrary higher-order derivatives,” Phys. Rev. D 108 (2023), no. 8 084031, 2307.08814.
- G. Tasinato, “Cosmic Acceleration from Abelian Symmetry Breaking,” JHEP 04 (2014) 067, 1402.6450.
- L. Heisenberg, “Generalization of the Proca Action,” JCAP 05 (2014) 015, 1402.7026.
- E. Allys, P. Peter, and Y. Rodríguez, “Generalized Proca action for an Abelian vector field,” JCAP 02 (2016) 004, 1511.03101.
- J. Beltrán Jiménez and L. Heisenberg, “Derivative self-interactions for a massive vector field,” Phys. Lett. B 757 (2016) 405–411, 1602.03410.
- E. Allys, J. P. Beltrán Almeida, P. Peter, and Y. Rodríguez, “On the 4D generalized Proca action for an Abelian vector field,” JCAP 09 (2016) 026, 1605.08355.
- L. Heisenberg, R. Kase, and S. Tsujikawa, “Beyond generalized Proca theories,” Phys. Lett. B 760 (2016) 617–626, 1605.05565.
- C. de Rham and V. Pozsgay, “New class of Proca interactions,” Phys. Rev. D 102 (2020), no. 8 083508, 2003.13773.
- R. Kimura, A. Naruko, and D. Yoshida, “Extended vector-tensor theories,” JCAP 01 (2017) 002, 1608.07066.
- N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, “Ghost condensation and a consistent infrared modification of gravity,” JHEP 05 (2004) 074, hep-th/0312099.
- N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, “Ghost inflation,” JCAP 04 (2004) 001, hep-th/0312100.
- C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, “The Effective Field Theory of Inflation,” JHEP 03 (2008) 014, 0709.0293.
- P. Creminelli, G. D’Amico, J. Norena, and F. Vernizzi, “The Effective Theory of Quintessence: the w<−1𝑤1w<-1italic_w < - 1 Side Unveiled,” JCAP 02 (2009) 018, 0811.0827.
- G. Gubitosi, F. Piazza, and F. Vernizzi, “The Effective Field Theory of Dark Energy,” JCAP 02 (2013) 032, 1210.0201.
- J. K. Bloomfield, E. E. Flanagan, M. Park, and S. Watson, “Dark energy or modified gravity? An effective field theory approach,” JCAP 08 (2013) 010, 1211.7054.
- J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Essential Building Blocks of Dark Energy,” JCAP 08 (2013) 025, 1304.4840.
- J. Gleyzes, D. Langlois, and F. Vernizzi, “A unifying description of dark energy,” Int. J. Mod. Phys. D 23 (2015), no. 13 1443010, 1411.3712.
- M. Lagos, T. Baker, P. G. Ferreira, and J. Noller, “A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories,” JCAP 08 (2016) 007, 1604.01396.
- K. Aoki, M. A. Gorji, S. Mukohyama, and K. Takahashi, “The effective field theory of vector-tensor theories,” JCAP 01 (2022), no. 01 059, 2111.08119.
- K. Aoki, M. A. Gorji, S. Mukohyama, and K. Takahashi, “Effective field theory of gravitating continuum: solids, fluids, and aether unified,” JCAP 08 (2022) 072, 2204.06672.
- K. Aoki, J. B. Jiménez, and D. Figueruelo, “Some disquisitions on cosmological 2-form dualities,” JCAP 04 (2023) 059, 2212.12427.
- S. Mukohyama and V. Yingcharoenrat, “Effective field theory of black hole perturbations with timelike scalar profile: formulation,” JCAP 09 (2022) 010, 2204.00228.
- J. Khoury, T. Noumi, M. Trodden, and S. S. C. Wong, “Stability of hairy black holes in shift-symmetric scalar-tensor theories via the effective field theory approach,” JCAP 04 (2023) 035, 2208.02823.
- S. Mukohyama, K. Takahashi, and V. Yingcharoenrat, “Generalized Regge-Wheeler equation from Effective Field Theory of black hole perturbations with a timelike scalar profile,” JCAP 10 (2022) 050, 2208.02943.
- H.-C. Cheng, M. A. Luty, S. Mukohyama, and J. Thaler, “Spontaneous Lorentz breaking at high energies,” JHEP 05 (2006) 076, hep-th/0603010.
- S. Mukohyama, “Towards a Higgs phase of gravity in string theory,” JHEP 05 (2007) 048, hep-th/0610254.
- B. Finelli, G. Goon, E. Pajer, and L. Santoni, “The Effective Theory of Shift-Symmetric Cosmologies,” JCAP 05 (2018) 060, 1802.01580.
- G. Cusin, M. Lewandowski, and F. Vernizzi, “Nonlinear Effective Theory of Dark Energy,” JCAP 1804 (2018), no. 04 061, 1712.02782.
- G. Lemaitre, “The expanding universe,” Annales Soc. Sci. Bruxelles A 53 (1933) 51–85.
- S. Mukohyama, “Black holes in the ghost condensate,” Phys. Rev. D 71 (2005) 104019, hep-th/0502189.
- J. Khoury, M. Trodden, and S. S. C. Wong, “Existence and instability of hairy black holes in shift-symmetric Horndeski theories,” JCAP 11 (2020) 044, 2007.01320.
- K. Takahashi and H. Motohashi, “Black hole perturbations in DHOST theories: master variables, gradient instability, and strong coupling,” JCAP 08 (2021) 013, 2106.07128.
- M. Minamitsuji, “Black holes in the quadratic-order extended vector-tensor theories,” Class. Quant. Grav. 38 (2021), no. 10 105011, 2105.08936.
- J. Chagoya, G. Niz, and G. Tasinato, “Black Holes and Abelian Symmetry Breaking,” Class. Quant. Grav. 33 (2016), no. 17 175007, 1602.08697.
- M. Minamitsuji, “Black holes in the generalized Proca theory,” Gen. Rel. Grav. 49 (2017), no. 7 86.
- E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon,” JHEP 08 (2014) 106, 1312.3204.
- T. Kobayashi and N. Tanahashi, “Exact black hole solutions in shift symmetric scalar–tensor theories,” PTEP 2014 (2014) 073E02, 1403.4364.
- J. Ben Achour and H. Liu, “Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry,” Phys. Rev. D 99 (2019), no. 6 064042, 1811.05369.
- H. Motohashi and M. Minamitsuji, “Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories,” Phys. Rev. D 99 (2019), no. 6 064040, 1901.04658.
- H. Motohashi and M. Minamitsuji, “General Relativity solutions in modified gravity,” Phys. Lett. B 781 (2018) 728–734, 1804.01731.
- K. Takahashi and H. Motohashi, “General Relativity solutions with stealth scalar hair in quadratic higher-order scalar-tensor theories,” JCAP 06 (2020) 034, 2004.03883.
- S. Mukohyama, K. Takahashi, K. Tomikawa, and V. Yingcharoenrat, “Quasinormal modes from EFT of black hole perturbations with timelike scalar profile,” JCAP 07 (2023) 050, 2304.14304.
- H. Motohashi and S. Mukohyama, “Weakly-coupled stealth solution in scordatura degenerate theory,” JCAP 01 (2020) 030, 1912.00378.
- M. A. Gorji, H. Motohashi, and S. Mukohyama, “Stealth dark energy in scordatura DHOST theory,” JCAP 03 (2021) 081, 2009.11606.
- M. A. Gorji, H. Motohashi, and S. Mukohyama, “Inflation with 0≤cs≤10subscript𝑐s10\leq c_{\rm s}\leq 10 ≤ italic_c start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ≤ 1,” JCAP 02 (2022), no. 02 030, 2110.10731.
- A. De Felice, S. Mukohyama, and K. Takahashi, “Avoidance of Strong Coupling in General Relativity Solutions with a Timelike Scalar Profile in a Class of Ghost-Free Scalar-Tensor Theories,” Phys. Rev. Lett. 129 (2022), no. 3 031103, 2204.02032.
- M. Minamitsuji, “Solutions in the generalized Proca theory with the nonminimal coupling to the Einstein tensor,” Phys. Rev. D 94 (2016), no. 8 084039, 1607.06278.
- L. Heisenberg, R. Kase, M. Minamitsuji, and S. Tsujikawa, “Hairy black-hole solutions in generalized Proca theories,” Phys. Rev. D 96 (2017), no. 8 084049, 1705.09662.
- L. Heisenberg, R. Kase, M. Minamitsuji, and S. Tsujikawa, “Black holes in vector-tensor theories,” JCAP 08 (2017) 024, 1706.05115.
- R. A. Konoplya, “Quasinormal modes and grey-body factors of regular black holes with a scalar hair from the Effective Field Theory,” JCAP 07 (2023) 001, 2305.09187.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.