Papers
Topics
Authors
Recent
Search
2000 character limit reached

Conditional Adjustment in a Markov Equivalence Class

Published 11 Nov 2023 in stat.ME | (2311.06458v2)

Abstract: We consider the problem of identifying a conditional causal effect through covariate adjustment. We focus on the setting where the causal graph is known up to one of two types of graphs: a maximally oriented partially directed acyclic graph (MPDAG) or a partial ancestral graph (PAG). Both MPDAGs and PAGs represent equivalence classes of possible underlying causal models. After defining adjustment sets in this setting, we provide a necessary and sufficient graphical criterion -- the conditional adjustment criterion -- for finding these sets under conditioning on variables unaffected by treatment. We further provide explicit sets from the graph that satisfy the conditional adjustment criterion, and therefore, can be used as adjustment sets for conditional causal effect identification.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.