Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On conformal biharmonic maps and hypersurfaces (2311.04493v3)

Published 8 Nov 2023 in math.DG

Abstract: In this article we initiate a thorough geometric study of the conformal bienergy functional which consists of the standard bienergy augmented by two additional curvature terms. The conformal bienergy is conformally invariant in dimension four and its precise structure is motivated by the Paneitz operator from conformal geometry. The critical points of the conformal bienergy are called conformal biharmonic maps. Besides establishing a number of basic results on conformal biharmonic maps, we pay special attention to conformal biharmonic hypersurfaces in space forms. For hypersurfaces in spheres, we determine all conformal biharmonic hyperspheres and then we classify all conformal biharmonic generalized Clifford tori. Moreover, in sharp contrast to biharmonic hypersurfaces, we show that there also exist conformal biharmonic hypersurfaces of hyperbolic space, pointing out a fundamental difference between biharmonic and conformal biharmonic hypersurfaces. Finally, we also study the stability of the conformal biharmonic hyperspheres in spheres and explicitly compute their index and nullity. In particular, we obtain that the index of the equator $\mathbb{S}4$ of $\mathbb{S}5$ is zero, i.e., it is stable, while the index of the equator $\mathbb{S}5$ of $\mathbb{S}6$ is seven.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. On constructing biharmonic maps and metrics. Ann. Global Anal. Geom., 23(1):65–75, 2003.
  2. Harmonic morphisms between Riemannian manifolds, volume 29 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2003.
  3. Some remarks on the biharmonic submanifolds of 𝕊3superscript𝕊3{\mathbb{S}}^{3}blackboard_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and their stability. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 51(1):171–190, 2005.
  4. Vincent Bérard. Un analogue conforme des applications harmoniques. C. R. Math. Acad. Sci. Paris, 346(17-18):985–988, 2008.
  5. Vincent Berard. Les applications conforme-harmoniques. Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, 2010. Thèse, Université de Strasbourg, Strasbourg, 2010.
  6. Vincent Bérard. Les applications conforme-harmoniques. Canad. J. Math., 65(2):266–298, 2013.
  7. Arthur L. Besse. Einstein manifolds. Classics in Mathematics. Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition.
  8. A construction of conformal-harmonic maps. C. R. Math. Acad. Sci. Paris, 350(21-22):967–970, 2012.
  9. Volker Branding. On interpolating sesqui-harmonic maps between Riemannian manifolds. J. Geom. Anal., 30(1):248–273, 2020.
  10. Volker Branding. Some analytic results on interpolating sesqui-harmonic maps. Ann. Mat. Pura Appl. (4), 199(5):2039–2059, 2020.
  11. James Eells, Jr. and Joseph H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109–160, 1964.
  12. Bochner-Simons formulas and the rigidity of biharmonic submanifolds. J. Geom. Anal., 31(2):1732–1755, 2021.
  13. Biharmonic and biconservative hypersurfaces in space forms. In Differential geometry and global analysis—in honor of Tadashi Nagano, volume 777 of Contemp. Math., pages 65–90. Amer. Math. Soc., [Providence], RI, [2022] ©2022.
  14. Biconservative hypersurfaces with constant scalar curvature in space forms. arXiv:2110.03438, 2021.
  15. Minimizing sequences for conformally invariant integrals of higher order. Calc. Var. Partial Differential Equations, 47(3-4):499–521, 2013.
  16. Harmonic maps. In Handbook of global analysis, pages 417–491, 1213. Elsevier Sci. B. V., Amsterdam, 2008.
  17. Spectra and eigenforms of the Laplacian on Snsuperscript𝑆𝑛S^{n}italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and Pn⁢(𝐂)superscript𝑃𝑛𝐂P^{n}({\bf C})italic_P start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( bold_C ). Osaka Math. J., 15(3):515–546, 1978.
  18. Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems. J. Reine Angew. Math., 343:146–161, 1983.
  19. Guo Ying Jiang. 2222-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7(4):389–402, 1986. An English summary appears in Chinese Ann. Math. Ser. B 7 (1986), no. 4, 523.
  20. Andreas Juhl. Families of conformally covariant differential operators, Q𝑄Qitalic_Q-curvature and holography, volume 275 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2009.
  21. Tobias Lamm. Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. Partial Differential Equations, 22(4):421–445, 2005.
  22. H. Blaine Lawson, Jr. Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2), 89:187–197, 1969.
  23. Pui Fai Leung. On the stability of harmonic maps. In Harmonic maps (New Orleans, La., 1980), volume 949 of Lecture Notes in Math., pages 122–129. Springer, Berlin-New York, 1982.
  24. Uniqueness of conformal-harmonic maps on locally conformally flat 4-manifolds. arxiv:2206.05874, 2023.
  25. Hypersurfaces with constant scalar curvature in a hyperbolic space form. Balkan J. Geom. Appl., 7(1):121–132, 2002.
  26. The index of biharmonic maps in spheres. Compos. Math., 141(3):729–745, 2005.
  27. Closed minimal Willmore hypersurfaces of 𝕊5⁢(1)superscript𝕊51{\mathbb{S}}^{5}(1)blackboard_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ( 1 ) with constant scalar curvature. Asian J. Math., 9(1):65–78, 2005.
  28. Rotationally symmetric biharmonic maps between models. J. Math. Anal. Appl., 431(1):494–508, 2015.
  29. Reduction methods for the bienergy. Rev. Roumaine Math. Pures Appl., 61(4):261–292, 2016.
  30. A formula of Simons’ type and hypersurfaces with constant mean curvature. J. Differential Geometry, 3:367–377, 1969.
  31. Cezar Oniciuc. On the second variation formula for biharmonic maps to a sphere. Publ. Math. Debrecen, 61(3-4):613–622, 2002.
  32. Ye-Lin Ou. A note on equivariant biharmonic maps and stable biharmonic maps. J. Math. Anal. Appl., 491(1):124301, 11, 2020.
  33. Biharmonic submanifolds and biharmonic maps in Riemannian geometry. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2020] ©2020.
  34. Stephen M. Paneitz. A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary). SIGMA Symmetry Integrability Geom. Methods Appl., 4:Paper 036, 3, 2008.
  35. Patrick J. Ryan. Homogeneity and some curvature conditions for hypersurfaces. Tohoku Math. J. (2), 21:363–388, 1969.
  36. Patrick J. Ryan. Hypersurfaces with parallel Ricci tensor. Osaka Math. J., 8:251–259, 1971.
  37. R. T. Smith. The second variation formula for harmonic mappings. Proc. Amer. Math. Soc., 47:229–236, 1975.
  38. Hajime Urakawa. Calculus of variations and harmonic maps, volume 132 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1993. Translated from the 1990 Japanese original by the author.
  39. Changping Wang. Moebius geometry of submanifolds in Snsuperscript𝑆𝑛S^{n}italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Manuscripta Math., 96(4):517–534, 1998.
  40. Changyou Wang. Remarks on biharmonic maps into spheres. Calc. Var. Partial Differential Equations, 21(3):221–242, 2004.
  41. Yuan Long Xin. Some results on stable harmonic maps. Duke Math. J., 47(3):609–613, 1980.
  42. Kentaro Yano. On harmonic and Killing vector fields. Ann. of Math. (2), 55:38–45, 1952.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.