Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SCADDA: Spatio-temporal cluster analysis with density-based distance augmentation and its application to fire carbon emissions (2311.04290v1)

Published 7 Nov 2023 in stat.CO and stat.AP

Abstract: Spatio-temporal clustering occupies an established role in various fields dealing with geospatial analysis, spanning from healthcare analysis to environmental science. One major challenge are applications in which cluster assignments are dependent on local densities, meaning that higher-density areas should be treated more strictly for spatial clustering and vice versa. Meeting this need, we describe and implement an extended method that covers continuous and adaptive distance rescaling based on kernel density estimates and the orthodromic metric, as well as the distance between time series via dynamic time warping. In doing so, we provide the wider research community, as well as practitioners, with a novel approach to solve an existing challenge as well as an easy-to-handle and robust open-source software tool. The resulting implementation is highly customizable to suit different application cases, and we verify and test the latter on both an idealized scenario and the recreation of prior work on broadband antibiotics prescriptions in Scotland to demonstrate well-behaved comparative performance. Following this, we apply our approach to fire emissions in Sub-Saharan Africa using data from Earth-observing satellites, and show our implementation's ability to uncover seasonality shifts in carbon emissions of subgroups as a result of time series-driven cluster splits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube