Papers
Topics
Authors
Recent
Search
2000 character limit reached

Formulating and Heuristic Solving of Contact Problems in Hybrid Data-Driven Computational Mechanics

Published 7 Nov 2023 in math.NA and cs.NA | (2311.04083v1)

Abstract: In this work we consider the hybrid Data-Driven Computational Mechanics (DDCM) approach, in which a smooth constitutive manifold is reconstructed to obtain a well-behaved nonlinear optimization problem (NLP) rather than the much harder discrete-continous NLP (DCNLP) of the direct DDCM approach. The key focus is on the addition of geometric inequality constraints to the hybrid DDCM formulation. Therein, the required constraint force leads to a contact problem in the form of a mathematical program with complementarity constraints (MPCC), a problem class that is still less complex than the DCNLP. For this MPCC we propose a heuristic quick-shot solution approach, which can produce verifiable solutions by solving up to four NLPs. We perform various numerical experiments on three different contact problems of increasing difficulty to demonstrate the potential and limitations of this approach.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.