Learning Robust Sequential Recommenders through Confident Soft Labels (2311.02446v1)
Abstract: Sequential recommenders that are trained on implicit feedback are usually learned as a multi-class classification task through softmax-based loss functions on one-hot class labels. However, one-hot training labels are sparse and may lead to biased training and sub-optimal performance. Dense, soft labels have been shown to help improve recommendation performance. But how to generate high-quality and confident soft labels from noisy sequential interactions between users and items is still an open question. We propose a new learning framework for sequential recommenders, CSRec, which introduces confident soft labels to provide robust guidance when learning from user-item interactions. CSRec contains a teacher module that generates high-quality and confident soft labels and a student module that acts as the target recommender and is trained on the combination of dense, soft labels and sparse, one-hot labels. We propose and compare three approaches to constructing the teacher module: (i) model-level, (ii) data-level, and (iii) training-level. To evaluate the effectiveness and generalization ability of CSRec, we conduct experiments using various state-of-the-art sequential recommendation models as the target student module on four benchmark datasets. Our experimental results demonstrate that CSRec is effective in training better performing sequential recommenders.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.